

Grande Prairie Regional College

Department: Academic Upgrading

COURSE OUTLINE - FALL 2008 & WINTER 2009 CH 0120 5 (4 - 0 - 2) HS Chemistry Grade 11 Equivalent

Instructor Nancy Fraser **Phone** 539 – 2980

Office J-216 E-mail nfraser@gprc.ab.ca

Office Hours As posted on my office door.

Prerequisite(s)/corequisite(s): CH 0110 and MA 0110 or SC 0100/MA 0110

A minimum grade of 60 % in CH 0110 or SC 0110 and

MA 0110 is recommended.

Required Text/Resource Materials: ©©© General Chemistry by Ebbing 8th Edition

©©© **Chemistry 0110 Review** if you were not in SC 0110 last semester.

- CH 0120 lab manual
- Lab coat
- Lab notebook (250 page coiled notebook is fine do not spend the money on a real lab notebook)
- Nonprogrammable calculator this is the only electronic devise allowed during tests or exams.
- 10 quad to 1 cm graph paper are also required.

Supplementary texts: These textbooks are available in A-204 and on reserve in the library

Chemistry 0110 Review by Fraser

Chemistry: A Study of Matter by Dorin

Introductory Chemistry: Zumdahl

Basic Chemistry by Seese and Daub 7th Edition

Chemistry: A Basic Introduction by Miller 4th Edition

Description: This course is designed to provide the student with an

understanding of the following chemical concepts:

Bonding, Chemical Equations, Stoichiometry, Gas Laws,

Solutions, Equilibrium, and pH.

Delivery Mode(s): Lecture will be the main method of delivery. There is also

a large laboratory component in this course.

Credit/Contact Hours: This is a 5 credit course and meets 6 hours per week (4

hour lecture and 2 hours lab).

Assumed Background Knowledge: (These topics will NOT be reviewed in class) Students should already:

- 1. be able to perform linear, quadratic, cubic, liquid-dry metric conversions.
- 2. know elementary atomic structure what protons, electrons, and neutrons are and where they are in an atom.
- 3. be able to define atomic number, atomic mass number and how to use them to calculate the number of protons, neutrons, and electrons in an atom.
- 4. be able to classify of matter.
- 5. be able to distinguish between chemical and physical properties and changes.
- 6. be able to draw atomic structure diagram for the first 20 elements.
- 7. be able to define valence electrons and draw electron dot diagrams.

If you are unfamiliar with these topics see me. The Chemistry 0110 Review will explain these in detail. It is available in the bookstore. There is an answer key in A-205 and on reserve in the library.

In addition to the above material: These will be briefly reviewed in class.

- 1. know nomenclature (naming compounds and writing formulae).

 Nomenclature is one of the most important topics that you will learn at the secondary level. It will NOT be reviewed at the post secondary level. If you are having trouble with this topic, get help IMMEDIATELY!!! See me!
- 2. be able to balancing equations by inspection.

Objectives:

Students should

- 1. be able to do nomenclature without the use of a periodic table.
- 2. be able to solve a variety of stoichiometry problems.
- 3. be able to calculate the % composition of each element in a compound.
- 4. be able to define and find empirical formulae given % composition by mass of each element.
- 3. understand the kinetic molecular theory of gases.
- 4. know and define gas laws (Boyle's Law, Charles' Law, combined gas laws, the ideal gas law.) Volume of gases under STP conditions and SATP if time permits.
- 5. be able to define temperature, pressure, vapour pressure, and boiling point.
- 6. be able to define solubility, and state factors affecting solubility and the rate of solution.
- 7. be able define unsaturated, saturated, supersaturated solutions and interpret solubility curves.
- 8 be able to solve stoichiometry problems from chemical equations including determining the limiting reagent.
- 8. understand equilibrium, write equilibrium equations for given reactions and understand the effect of changing concentration.
- 9. be able to write solubility product expression for given compounds.
- 10. understand and define K_w and pH and to able to perform related calculations.
- 11. be able to write the electronic and orbital box diagrams for any element.

- 12. be able to compare the reactivity and radius based on atomic and electronic structures, ionization energy and electronegativities.
- 13. be able recognizes trends in the periodic table.
- 14. be able to draw the structural diagrams for various molecules etc. using VSEPR.
- 15. be able to distinguish between polar, nonpolar covalent and ionic bonds by calculating. the difference in electronegativities and observing the shapes of molecules.
- 16. be able to recognize and define a coordinate covalent bond.
- 17. be able to recognize and define polar, and nonpolar molecules from the diagrams.
- 18. be able to recognize and define hydrogen bonding, and Van der Waal's force.

Grading Criteria:

Regular attendance is expected of all students, and is crucial to passing this course. Students who miss classes will soon find themselves falling behind and failing. Lateness will **not** be tolerated as it interrupts the instructor and fellow classmates. As per Department Policy, if you miss more than 10 per semester of classes in any course, you may be debarred from the final exam for that course.

A certificate (a doctor's or a note from the funeral home) will be required to make up the midterm or final exam. You will receive a grade of F if you miss the final. Call if you are going to miss a test. There may be a deduction of 10% for test rewrites.

***Very important:

Laboratory attendance to each specific experiment is compulsory; a passing grade in the laboratory component is required to pass the course. There are NO 'make up' labs in this course. Being absent from an experiment will result in a grade of ZERO for that experiment.

Lab reports must be submitted on the required date and at the **required time**.

Assignments may not be accepted after the assignment has been returned to the class. I am usually a speedy marker and usually return papers the next day.

Penalties for late **assignments** are as follows: (Assuming that I have not returned the marked assignments)

1 day late - 20%, 2 days late - 50%, 3 days late - 100%

Penalties for late lab reports are as follows:

5 minutes -10%, 24 hours -20%, after that -100%

Marking Scheme:

 Lab Reports:
 15%

 Assignments:
 15%

 Tests:
 15%

 Midterm:
 15%

 Final Exam:
 40%

 Total
 100%

Grades will be assigned on the Letter Grading System

Academic Upgrading Department Grading Conversion Chart

Alpha Grade	4-point Equivalent	Percentage Guidelines	Designation
\mathbf{A}^{+}	4	90 – 100	
A	4	85 – 89	EXCELLENT
\mathbf{A}^{-}	3.7	80 – 84	EIDGE CLAGG CEANDING
\mathbf{B}^{+}	3.3	76 – 79	FIRST CLASS STANDING
В	3.0	73 – 75	COOD
B -	2.7	70 – 72	GOOD
C +	2.3	67 – 69	
С	2.0	64 – 66	SATISFACTORY
C-	1.7	60 - 63	
\mathbf{D}^{+}	1.3	55 – 59	MINIMAL DAGG
D	1.0	50 – 54	MINIMAL PASS
F	0	0 – 49	FAIL

It is recommended that you have a grade of 60 % or better to continue to CH 0130.

Transferability: This course is equivalent to Alberta grade 11 chemistry and is transferable to other post secondary institutions.

	Time	ChRe(ilién	ays en 10 ^{Che} m (stady)	in)f Mandition	Edic inis Aty Zalidade	Ba (SæÆstd dýt) Ghemistry	eahiistan aub) Ch e n ikan	ileiInt48 duditiiom
SI units	On your own time	19 – 30	16 – 22	20 – 22	18 – 22	16 – 18	19 – 23	
Scientific Notation	On your own time	31 – 37	50 – 53		15 – 18	27 – 33	236 – 38	
Understand and use Significant Figures	1 day	37 – 51	26 – 37 54 – 58	16 – 20	22 – 28	21 – 27	33 – 26 38 – 42	
Chemical Definitions and Classification of matter	On your own time	14 – 18	63 – 77	9 – 13	56 – 64	52 – 61	79	
WHMIS	On your own time	5 – 10						
Review Atomic Structure	On your own time	56 – 69	109 – 123 top of 764	42 – 53	214 – 216 91 – 97	80 – 89	60 - 72 $90 - 102$	
Review Valence Electrons & Electron Dot Diagrams	On your own time	70 – 71				89 – 90		
Review Nomenclature	2 days	79 – 150	151 – 168	55 – 71	122 – 142	165 – 180	81–82 188–183 197–206	

	Time	Ch(dimissi	rry) 0110 Review	in)f A ^{rl} aHdition Gen omi n	dié inishty dichth	Ba (SeÆsta styt) Ghemistry	enhitson aub) Ch e m isso	le Intibaktiiom
*Review Balancing Equations by Inspection	On your own time	152 – 167	206 – 223	73 – 76 136 – 144 150 – 152	154 – 165	216 – 235	233 – 240	
Stoichiometry								
Define & Calculate Molecular Mass, Gram Molecular Mass, Mole, Avogadro's Number Mole – Mass Relationship Mole – Molecule Relationship Mole-Volume of gas at STP Relationship	4 days		175 – 195 175 – 189 175 – 189	87 – 93 103 – 107	211 – 213 216 – 226 246 – 258	188 – 197	210 – 219	
% Composition	1 day		190 – 191	93 – 94	226 – 228	199 –205	219 – 223	
**Empirical Formula	1 day		192 – 195	97 – 102	228 - 237		223 – 229	
Kinetic Molecular Theory of Gases	1 day		271 – 283	201 – 204		277 – 278	280 – 281	

	Time	C'h(diwisstany) 0	110 Review	n)f Mardition Geh ov in	dié inisht/Zdatha	Ba (SeEsta hjt) Ohemistry	ahitstiD aub) Ch e m ikatis	lœiInt#ÖÆuditii
Gas Laws: Boyle's Law, Charles' Law and Ideal Gas Law	2 days		297 – 313 326 – 328	176 – 190		279 – 288 285 – 297	285 – 302	
***Volume of Gases under STP Conditions & (SATP Conditions If time permits)	1 day		297 – 313 326 – 328	176 – 190			303 – 308	
Concentration (Molarity) (Molality)	1 day		449 – 451 452 – 453	155 – 159 161 – 163 491 – 492		377 – 379 384 – 386	353 – 368 372 – 373	
Equation Stoichiometry & Limiting Reagents	4 days	2	233 – 252	104 – 107	259 – 265	249 – 256 259 – 265	240 – 253	
% Yield	if time			107 – 112	265 – 266	257 – 259	253 – 253	
Solubility			437 – 438					
Solutions: Saturated. Unsaturated, Supersaturated Solution.	1 day	2	433 – 446	127 – 128		363 – 370 370 – 371	350 – 357	

	Time	Ch(Finiss)	rry) 0110 Review	in)f Mandition Gen o kin	dié inis H ^t /Zdhibds	Ba (SeESte dyl) Ohemistry	ahisklid aub) Ch e m ikkli d	le:Int48Æxditiiom
Factor Affecting Rates of Solution			442 – 439	479 496		363 – 370	357 – 363	
Solutions: Concentrated and Dilute Solutions			446 – 447	157 – 159		379 – 381		
Equilibrium Constant	1 day		513 - 517 518 - 523	621 – 623		477 – 479	427 – 433	
Le Chatelier Principle			524 – 527	639 – 642		480	433 – 440	
Solubility Product (K _{sp})			533 – 537	735 – 744		490 – 493	440 – 444	
Arrhenius Acids, Bases, pH, & pOH (Strong acids and bases only)	1 day		550 - 552 558 - 559 574 - 580	660 – 662 673 – 681	185 – 188	406 – 407 418 – 422	389 – 390 397 – 409	
Indicators			581 – 583	680 –681				
Neutralization Reactions	1 day		584 – 586	136 – 139 140 – 142 161 – 164		414 – 417		

	Time	Chemissans) 0110 Review	in)f Mandition General	Edic inis Atyzdálodz	Ba (SeÆsd dýt) ôhemistry	Eathits(dh) aub) Ch <i>e</i> nd s(did)	©iIn 4 8Æiditiiom
Atomic Structure Orbitals (s, p, d, f) Pauli Exclusion Principle& Hund's Rule	3 days	335 – 353	282 – 287 294 – 310		91 – 98	102 – 116	
Ionization Energy & Electronegativity	2 days	369 – 373	316 – 318		119 130 – 132	136 – 139 140 – 142	
****Trends in the Periodic Table	3 days	359 - 369 $380 - 382$	315 - 316 $320 - 322$			120 – 148	
Ionic Bonding	0.5 days	391 – 394	329 – 330		124 – 127	156 – 160	
Covalent Bonding	0.5 days	396 – 402	341 – 347		128 – 135	161 – 164, 174	
Hydrogen Bonding	0.5 days	416 – 419	440 – 442				
Van der Waal Force	0.5 days	421 – 422	438 – 440				
Metal-Metal Bonding (If time permits)	0.5 days	419 – 420	bottom 534			155 – 156	
VSEPR Polar Molecules	5 days	402 – 409 412 – 416	347 – 350 373 – 380		135 – 147	164 – 180	

	Time							
		Ch(dim isst	ny) 0110 Review	m)f A /faltdition Ge neb ah	dié inis htý Zdáda dis	Ba (SeÆSt dy t)Ghemistry	ahistid aub) Ch e n Bais	c∉Int48cExcition
Hydrogen Bonding	0.5 days		416 – 419	440 – 442				
Van der Waal Force	0.5 days		421 - 422	438 – 440				
Metal-Metal Bonding (If time permits)	0.5 days		419 – 420	bottom 534			155 – 156	

^{*} Test 1

^{**}Test 2

^{***}Test 3

^{***}Midterm***

^{****}Test 4