GRANDE PRAIRIE REGIONAL COLLEGE
 MATH 1020
 WINTER 2010

Title: \quad Engineering Linear Algebra (3-1-0) 3 credits
Transfer: UA*, UC*, UL*, AU*, AF*, CU, KUC, other (from GPRC Calendar, * important transfer information, consult the Alberta Transfer Guide)

Prerequisite: MA1000

Schedule:	Lecture A3	T Th		10:00-11:30	J202
	Seminar AS1	M		$12: 00-1: 00$	J226
	Seminar AS2		F	$10: 00-11: 00$	

Instructor: Dallas Sawtell
Office C204
Phone 539-2989
e-mail dsawtell@gprc.ab.ca
Textbooks: Anton-Rorres, Elementary Linear Algebra, Applications Version
Grading: Worksheets 13%
Quizzes 12\%
Midterm 25\%
Final Exam 50\%
Seminars/worksheets: The seminars are one hour long. A worksheet will be given out that must be handed in by the end of the seminar for marking. Seminars start Friday, Jan. 8.

Quizzes: Quizzes will be held every other Tuesday starting Jan 12. Quizzes can not be made up if missed.

Midterm: If the midterm is missed with a good reason, the weight will be put on the final (ie. the final will be worth 75\%). A doctors note will be required. The midterm will be on Tues., Feb 23.

Finals: \quad Finals are held from April 17 to April 29 inclusive (including Saturdays and evenings). Writing finals early is not permitted. A doctor's note is required if you have to miss a final.

Calculators: Use of calculators is not permitted on the quizzes or exams.
Plagarism: See Calendar

Grading Scheme:	A+	4.0	$95-100 \%$
	A	4.0	$90-94 \%$
	A-	3.7	$85-89 \%$
	B+	3.3	$80-84 \%$
	B	3.0	$75-79 \%$
	B-	2.7	$70-74 \%$
	C+	2.3	$66-69 \%$
	C	2.0	$62-65 \%$
	C-	1.7	$58-61 \%$
	D+	1.3	$55-57 \%$
D	1.0	$50-54 \%$	
	F	0.0	$0-49 \%$

Note: A grade of D or D+ will NOT meet prerequisite requirements for other math courses and may not be accepted by other universities.

Content:

Ch 1- Systems of linear equations and matrices-Introduction to Systems of Linear Equations, Gaussian Elimination, Flows and Electrical Circuits (11.2), Matrices and Matrix Operations, Inverses; Rules of Matrix Arithmetic, Cryptography, Invertibility, Diagonal, Triangular, Symmetric Matrices
Ch 2- Determinants-The Determinant function, Evaluating Determinants by Row Reduction, Properties of the Determinant Function, cofactor Expansion; Cramer's Rule
Ch3- Vectors in 2 and 3-Space-Introduction to Vectors, Norm of a Vector; Vector Arithmetic, Dot Product; Projections, Cross Product, Lines and Planes
Ch 4- Euclidean Vector Spaces-Euclidean n-Space
Ch 5- General Vector Spaces-Real Vector Spaces, Subspaces, Linear Independence, Basis and dimension, Row Space, column Space, Nullspace, Rank and Nullity
Ch 6- Inner Product Spaces -Orthonormal Bases; Gram-Schmidt Process
Ch7- Eigenvalues, Eigenvectors-Eigenvalues and Eigenvectors, Diagonalization, Orthogonal Diagonalization, Gram-Schmidt
Ch 10-Complex Numbers-Complex numbers, Division/Multiplication of Complex Numbers, Polar Form of Complex Numbers
9.1- \quad Systems of Differential Equations-2 ${ }^{\text {nd }}$ order and higher homogeneous DEs with constant coefficients, including complex solutions

