GRANDE PRAIRIE REGIONAL COLLEGE MATH 1020 WINTER 2010

Title:	Engineering Linear Algebra (3-1-0) 3 credits			
Transfer:	UA*, UC*, UL*, AU*, AF*, CU, KUC, other (from GPRC Calendar, * important transfer information, consult the Alberta Transfer Guide)			
Prerequisite:	MA1000			
Schedule:	Lecture A3T Th10:00-11:30J202Seminar AS1M12:00-1:00J226Seminar AS2F10:00-11:00			
Instructor:	Dallas Sawtell Office C204 Phone 539-2989 e-mail <u>dsawtell@gprc.ab.ca</u>			
Textbooks:	Anton-Rorres, Elementary Linear Algebra, Applications Version			
Grading:	Worksheets13%Quizzes12%Midterm25%Final Exam50%			
Seminars/wo	worksheets : The seminars are one hour long. A worksheet will be given out that must be handed in by the end of the seminar for marking. Seminars start Friday, Jan. 8.			
Quizzes:	Quizzes will be held every other Tuesday starting Jan 12. Quizzes can not be made up if missed.			
Midterm:	If the midterm is missed with a good reason, the weight will be put on the final (ie. the final will be worth 75%). A doctors note will be required. The midterm will be on Tues., Feb 23.			
Finals:	Finals are held from April 17 to April 29 inclusive (including Saturdays and evenings). Writing finals early is not permitted. A doctor's note is required if you have to miss a final.			
Calculators:	Use of calculators is not permitted on the quizzes or exams.			
Plagarism:	See Calendar			

Grading Scheme:	A+	4.0	95-100%
	A	4.0	90-94%
	A-	3.7	85-89%
	B+	3.3	80-84%
	B	3.0	75-79%
	B-	2.7	70-74%
	C+	2.3	66-69%
	C	2.0	62-65%
	C-	1.7	58-61%
	D+	1.3	55-57%
	D	1.0	50-54%
	F	0.0	0-49%

Note: A grade of D or D+ will NOT meet prerequisite requirements for other math courses and may not be accepted by other universities.

Content:

- Ch 1- Systems of linear equations and matrices-Introduction to Systems of Linear Equations, Gaussian Elimination, Flows and Electrical Circuits (11.2), Matrices and Matrix Operations, Inverses; Rules of Matrix Arithmetic, Cryptography, Invertibility, Diagonal, Triangular, Symmetric Matrices
- Ch 2- Determinants-The Determinant function, Evaluating Determinants by Row Reduction, Properties of the Determinant Function, cofactor Expansion; Cramer's Rule
- Ch3- Vectors in 2 and 3-Space-Introduction to Vectors, Norm of a Vector; Vector Arithmetic, Dot Product; Projections, Cross Product, Lines and Planes
- Ch 4- Euclidean Vector Spaces-Euclidean n-Space
- Ch 5- General Vector Spaces-Real Vector Spaces, Subspaces, Linear Independence, Basis and dimension, Row Space, column Space, Nullspace, Rank and Nullity
- Ch 6- Inner Product Spaces -Orthonormal Bases; Gram-Schmidt Process
- Ch7- Eigenvalues, Eigenvectors-Eigenvalues and Eigenvectors, Diagonalization, Orthogonal Diagonalization, Gram-Schmidt
- Ch 10- Complex Numbers-Complex numbers, Division/Multiplication of Complex Numbers, Polar Form of Complex Numbers
- 9.1- Systems of Differential Equations-2nd order and higher homogeneous DEs with constant coefficients, including complex solutions