GRANDE PRAIRIE REGIONAL COLLEGE MA 1020 A3 WINTER 2008

Title:	Applied Linear Algebra 3.5 (3-1-0) UT 60 Hours
Transfer:	UA*, UC*, UL*, AU*, CU, KUC (from GPRC Calendar; * indicates important transfer information: see the Alberta Transfer Guide)
Prerequisite:	MA 1000 or equivalent
Schedule:	Lecture A3 T R 10:00—11:20 J 226 Seminar AS1 M 12:00—12:50 J 202
Instructor	Tom McLeister Office C 204 Phone 539-2989 e-mail <u>tmcleister@gprc.ab.ca</u>
Office Hours	M W 2:30—4:00
Textbook	Anton and Rorres Elementary Linear Algebra, Applications Version, 9 th Ed.
Grading:	Worksheets10%Quizzes15%Midterm25%Final Exam50%
Worksheets	The worksheets will be done during the seminars
Quizzes	Quizzes will be held weekly during the Thursday Lecture period.
Midterm	The Midterm is (tentatively) scheduled for Thursday, Feb 14
Calculators	Calculators are not permitted on the quizzes or exams

Content

- Ch 1 Systems of linear equations and matrices
 - Introduction to systems of linear equations
 - Gaussian Elimination
 - Matrices and Matrix Operations
 - Inverses; Rules of Matrix Arithmetic
 - Invertibility
 - Diagonal, Triangular, Symmetric Matrices

Ch 2 – Determinants

- The Determinant Function
- Evaluating Determinants by Row Reduction
- Properties of the Determinant Function
- Cofactor Expansion; Cramer's Rule
- Ch 3 Vectors in 2 and 3-Space
 - Introduction to Vectors
 - Norm of a vector; Vector Arithmetic
 - Dot Product; Projections
 - Cross Product
 - Lines and Planes
- Ch 4 Euclidean Vector Spaces
 - Euclidean n-Space
 - Linear Transformations (May include parts of Ch 8)

Ch 5 – General Vector Spaces

- Real Vector Spaces
- Subspaces
- Linear Independence
- Basis and Dimension
- Row Space, Column Space, Nullspace
- Rank and Nullity
- Ch 6 Inner Product Spaces
 - Orthonormal Bases; Gram-Schmidt Process
- Ch 7 Eigenvalues, Eigenvectors
 - Eigenvalues and Eigenvectors
 - Diagonalization
- Ch 10 Complex Vector Spaces
 - Complex Numbers
 - Arithmetic of Complex Numbers
 - Polar Form
 - Complex Vector Spaces
- Ch 9 Systems of Differential Equations
- Ch 11 Applications of Linear Algebra
 - Selected Topics