GRANDE PRAIRIE REGIONAL COLLEGE
 MATH 1020
 WINTER 2005

Title: Engineering Linear Algebra
Prerequisite: MA1000

Schedule:	Lecture A3	M W	$8: 30-10: 00$	J229
	Seminar AS1	M	$12: 00-1: 00$	J201
	Seminar AS2	M	$3: 30-4: 30$	J229

Instructor: Dallas Sawtell
Office C204
Phone 539-2989 e-mail dsawtell@gprc.ab.ca
Textbooks: Anton-Rorres, Elementary Linear Algebra, Applications Version
Grading: Worksheets 10%
Quizzes 15\%
Midterm 25\%
Final Exam 50\%
Labs/worksheets: The seminars are one hour long. A worksheet will be given out that must be handed in by the end of the seminar for marking.

Quizzes: Quizzes will be held every Wednesday during the last half hour of class starting Wed. Jan 12. Quizzes can not be made up if missed.

Midterm: If the midterm is missed with a good reason, the weight will be put on the final (ie. the final will be worth 75%). A doctors note will be required. The midterm will be on Wed., Feb 16.

Finals: \quad Finals are held from April 16 to April 26 inclusive (including Saturdays and evenings). Writing finals early is not permitted.

Calculators: Use of calculators is not permitted on the quizzes or exams.
Grading Scheme: A to A+ Excellent
$\mathrm{B}+$ to A - Very good
B to B- Good
C- to C+ Satisfactory
D Minimal Pass
F Fail

Note: A grade of \mathbf{D} will NOT meet prerequisite requirements for other math courses and may not be accepted by other universities.

Detailed content:

Ch 1- Systems of linear equations and matrices
-Introduction to Systems of Linear Equations
-Gaussian Elimination
-Flows and Electrical Circuits (11.2)
-Matrices and Matrix Operations
-Inverses; Rules of Matrix Arithmetic
-Cryptography
-Invertibility
-Diagonal, Triangular, Symmetric Matrices
Ch 2- Determinants
-The Determinant function
-Evaluating Determinants by Row Reduction
-Properties of the Determinant Function
-cofactor Expansion; Cramer's Rule
Ch3- Vectors in 2 and 3-Space
-Introduction to Vectors
-Norm of a Vector; Vector Arithmetic
-Dot Product; Projections
-Cross Product
-Lines and Planes
Ch 4- Euclidean Vector Spaces
-Euclidean n-Space
Ch 5- General Vector Spaces
-Real Vector Spaces
-Subspaces
-Linear Independence
-Basis and dimension
-Row Space, column Space, Nullspace
-Rank and Nullity
Ch 6- Inner Product Spaces
-Orthonormal Bases; Gram-Schmidt Process
Ch7- Eigenvalues, Eigenvectors
-Eigenvalues and Eigenvectors
-Diagonaliztion
Ch 10- Complex Numbers
-Complex numbers
-Division/Multiplication of Complex Numbers
-Polar Form of Complex Numbers
9.1- Systems of Differential Equations
$2^{\text {nd }}$ order and higher homogeneous DEs with constant coefficients, including complex solutions

