

DEPARTMENT SCIENCE

COURSE OUTLINE – WINTER 2018

PC1310 (A3): MECHANICS - 4.3 (3-1-3/2) 82.5 Hours for 15 Weeks

INSTRUCTOR:	Dr. Greg Ballentine	PHONE:	780-539-2008	
OFFICE:	C 414 E-MAIL: gt		gballentine@gprc.ab.ca	
	10:30 – 11:30 AM Mon	day to Friday		
OFFICE HOURS:	(or whenever else can b	e arranged – con	me check my office at any time)	

CALENDAR DESCRIPTION: Kinematics and dynamics of particles; gravitation; work and energy; linear momentum; angular momentum; systems of particles; introduction to dynamics of rigid bodies.

PREREQUISITE(S)/COREQUISITE: MA 1000, EG 1300, PC 1300, MA 1010

REQUIRED TEXT/RESOURCE MATERIALS: Engineering Mechanics, Statics and Dynamics, 14th Ed., R. C. Hibbeler Publisher: Prentice Hall, *Fundamentals of Physics*, 10th Edition Extended, Halliday, Resnick and Walker, Publisher: Wiley. **AND** PC 1310 Lab Manual

DELIVERY MODE(S): Lectures (WF 13:00-14:20 J203), Seminars (S1 R 13:00-13:50 J228), Labs (alternating weeks – see Moodle schedule – F 14:30-17:20 J103 and J101)

COURSE OBJECTIVES: This course is designed to be an introduction to kinematics and dynamics with a calculus based level, specifically for students in Engineering. Kinematics and dynamics will be applied to the 1-D and 2-D behavior of rigid body particles in motion. Free body diagrams will be used to calculate the behavior of particles or a system of particles and the associated translational or rotational momentum, work and energy. Laboratory experiments will be conducted to verify the principles presented in class.

LEARNING OUTCOMES: Students will have the knowledge to be able to analyze the rectilinear and curvilinear motion of rigid particles in 1-D and 2-D under the influence of forces. They will be able to calculate a particle's linear and angular momentum, work and energy. Students will know and be able to explain the underlying basis for general planar kinematics,

TRANSFERABILITY: UA, UC, UL, AU, Augustana UA, CUC, GMU, KUC

***Warning:** Although we strive to make the transferability information in this document up-to-date and accurate, **the student has the final responsibility for ensuring the transferability of this course to Alberta Colleges and Universities**. Please consult the Alberta Transfer Guide for more information.

You may check to ensure the transferability of this course at Alberta Transfer Guide main page <u>http://www.transferalberta.ca</u> or, if you do not want to navigate through few links, at <u>http://alis.alberta.ca/ps/tsp/ta/tbi/onlinesearch.html?SearchMode=S&step=2</u>

** Grade of D or D+ may not be acceptable for transfer to other post-secondary institutions. **Students** are cautioned that it is their responsibility to contact the receiving institutions to ensure transferability

EVALUATIONS:

Assignments	10%
Labs	20% (Must pass Lab to pass course)
Seminars	5%
Midterm #1	15% (or 0%*) February 16 th
Midterm #2	15% (or 0%*) March 23 rd
Final Exam	50% (or 35%*) Cumulative. Time and Location TBA by Registrar's Office

* The lowest midterm will be dropped and its weight will be added to the final exam if it improves your mark **Midterm Exams:** Students are allowed a formula sheet (handwritten 8.5 x 11 inch both sides), a calculator (any calculator WITHOUT communication features) and HB pencil(s) and eraser. **Final Exam:** This exam is cumulative. Students are allowed the same items as for a midterm exam.

GRADING CRITERIA: (The following criteria may be changed to suite the particular course/instructor)

Please note that most universities will not accept your course for transfer credit **IF** your grade is **less than C-**.

Alpha	4-point	Percentage	Alpha	4-point	Percentage
Grade	Equivalent	Guidelines	Grade	Equivalent	Guidelines
A+	4.0	90-100	C+	2.3	67-69
А	4.0	85-89	С	2.0	63-66
A-	3.7	80-84	C-	1.7	60-62
B+	3.3	77-79	D+	1.3	55-59
В	3.0	73-76	D	1.0	50-54
B-	2.7	70-72	F	0.0	00-49

COURSE SCHEDULE/TENTATIVE TIMELINE:

NOTE: The course schedule is on moodle and may be updated there if necessary. This schedule is preliminary but gives a good idea of which sections in the textbooks you should read to be caught up with the class lectures

Date	Topic	Sections in Hibbeler	Sections in HRW*		
Jan 5 th	Introduction	1-1, 1-2, 1-3, 1-4, 1-5			
Jan 10 th	Basic Kinematics	12-1, 12-2, 12-3	2-1, 2-2, 2-3, 2-4		
Jan 12 th	Curvilinear Motion	12-4, 12-5	4-5		
Jan 17 th	Projectile Motion	12-6, 12-7	2-5, 4-4		
Jan 18 th	Seminar – Kinematics				
Jan 19 th	Rotating and Translating Axe	es 12-9, 12-10	4-1, 4-2, 4-3		
Jan 19 th	Lab 6 - Acceleration of Gravity				
Jan 24 th	Newton's Laws	13-1, 13-2, 13-3	5-1, 5-2, 5-3, 13-1, 13-2		
Jan 25 th	Seminar – Projectiles				
Jan 26 th	Freebody Diagrams	13-4, 13-5	6-1, 6-2		
Jan 31 st	Newton's Laws Examples				
Feb 1 st	Seminar- Newton's Laws				
Feb 2 nd	Work and Energy	14-1, 14-2, 14-3	7-1, 7-2, 7-3, 7-4, 7-5		
Feb 2 nd	Lab 7- Non-Uniform Motion				
Feb 7 th	Power and Efficiency	14-4			
Feb 8 th	Seminar – Work and Energy				
Feb 9 th	Conservative Forces	14-5	8-1, 8-2, 8-3, 8-4		
Feb 14 th	Energy Examples	14-6	8-5		
Feb 15 th	Seminar- Conservative Force	s			
Feb 16 th	Midterm #1				
Feb 28 th	Impulse	15-1, 15-2	9-1, 9-2, 9-4		
Mar 1 st	Seminar- Difficult problems	from midterm			
Mar 2 nd	Momentum	15-3	9-3, 9-5		
Mar 2 nd	Lab 8- Atwood's Pulley				
Mar 7 th	Collisions	15-4	9-6, 9-7, 9-8		
Mar 8 th	Seminar - Momentum				
Mar 9 th	Angular Momentum	15-5, 15-6	11-6, 11-7		
Mar 14 th	Angular Impulse	15-7			
Mar 15 th	Seminar – Angular Momentum				
Mar 16 th	Rotation and Translation	16-1, 16-2, 16-3	10-1, 10-2, 10-3		
Mar 16 th	Lab 9– Collision on a ramp				
Mar 21 st	Rotational Examples				

Mar 22 nd	Seminar - Rotational Kinema	tics	
Mar 23 rd	Midterm #2		
Mar 28 th	Moments of Inertia	17-1	10-5
Mar 29 th	Seminar- Difficult problems f	from midterm	
Apr 4 th	Rotational Motion Equations	17-2	10-6, 10-7
Apr 5 th	Seminar – $\tau = I\alpha$		
Apr 6 th	Rotation and Translation	17-3, 17-4, 17-5	11-1, 11-2, 11-3, 11-4
Apr 6 th	Lab 10 – Moment of Inertia (handout different from	manual)
Apr 11 th	Rotational Kinetic Energy	18-1	10-4
Apr 12 th	Seminar- Review		
Apr 13 th	Conclusion		

Hibbeler is our textbook as it is calculus based. The sections in Halladay, Resnick and Walker are also given as an algebra based reference. Both are useful to read and should be available to the student.

STUDENT RESPONSIBILITIES:

Refer to the College Policy on Student Rights and Responsibilities at https://www.gprc.ab.ca/about/administration/policies/fetch.php?ID=69

STATEMENT ON PLAGIARISM AND CHEATING:

Cheating and plagiarism will not be tolerated and there will be penalties. For a more precise definition of plagiarism and its consequences, refer to the Student Conduct section of the College Calendar at <u>http://www.gprc.ab.ca/programs/calendar/</u> or the College Policy on Student Misconduct: Plagiarism and Cheating at <u>https://www.gprc.ab.ca/about/administration/policies</u>

**Note: all Academic and Administrative policies are available on the same page.