

PC 1310 MECHANICS 4.3(3-2/2-3/2) UT(4.3) Fall 9.7. U of A Equivalent - EN PH 131 Course Outline

Calendar Description:

PC 1310 Mechanics 4.3(3-1-1.5) UT(4.3) Kinematics and dynamics of particles; gravitation; work and energy; linear momentum; angular momentum; systems of particles; introduction to dynamics of rigid bodies. Prerequisite: MATH 30, MATH 31, PHYSICS 30. Corequisite: MA 1000

Instructor

Dr. Jaime P. Santiago

J209 539-2865

Lecture:

MWF 2:00 - 2:50 p.m., J229

Laboratory:

T 3:00 - 5:50 p.m., J103

Seminar

R 1:30 - 2:20 p.m., J226 (Section S1)
T 1:30 - 2:20 p.m., J226 (Section S2)

Primary Textbook:

Engineering Mechanics, Statics and Dynamics, 6th

Edition, R. C. Hibbeler (MacMillan)

Secondary Textbook:

Physics for Scientists and Engineers, 3rd Edition

R. A. Serway (Saunders)

Laboratory Manual:

Physics 131/137/141/143 Laboratory Manual

Physics Department, University of Alberta

(McGraw-Hill Ryerson)

Assignments:

10 problem sets

25% deduction per day late

Assignments more than 2 days late will not be accepted

Grading:	Assignments	10%
	Seminars	5%
	Laboratory	20%
	Midterm Exam	20%
	Final	45%

Detailed Course Description

A. Introductory Materials (2 – 50 minute lectures)

- Mechanics
 - Where does dynamics of particles fit into the field of Mechanics?
- Historical Background
 - Galileo, Newton, Euler, D'Alembert, Lagrange, Hamilton
- Fundamental Quantities
 - Definitions of mass, length and time.
- Idealizations and Models
 - Particles and concentrated forces
 - When can a finite dimensioned body by considered a particle?
- Units of Measurement
- Numerical calculations
 - Dimensional consistency
 - Unit conversions
 - Significant figures
- Trigonometry Review

Mathematics Review (2 -- 50 minute lectures plus 1 -- 3 hour lab period)

- Scalars
 - Examples and properties
- Vectors
 - Examples (use velocity vectors)
 - Right handed coordinate systems
 - Mathematical properties, vector addition, scalar product, vector product
- Differential Calculus
 - functions, limits, continuity
 - derivative as slope of a function
 - some standard derivatives.
- Integral Calculus
 - anti-derivative, indefinite integrals,
 - evaluation of integration constants
 - definite integrals, integral as area under the curve of a function
 - some standard integrals.

Kinematics of Rectilinear Motion of a Particle (4)

- Absolute motion of a particle along a line
- Definition of position, displacement, velocity and acceleration vectors

Course Outline

- Difference between average velocity and acceleration and instantaneous values of velocity and acceleration; distance and speed
- 4. $v = \frac{ds}{dt}$, $a = \frac{dv}{dt} = \frac{d^2s}{dt^2}$, $a = v \frac{dv}{ds}$
- Special case, a = constant
- General case, a ≠ constant
 Consider a = a(t), a = a(v), and a = a(s)
- 7. Graphical methods

D. Kinematics of Planar Motion of a Particle (5)

- 1. Position, displacement, velocity, and acceleration vectors
- 2. Cartesian components
 - projectile motion
- 3. Normal and tangential components
 - General planar motion
 - Special case, uniform circular motion (ρ = constant, v = constant)
- 4. Cylindrical components
 - General planar motion
 - Special case, circular motion (r = constant)
- Absolute dependent motion of two or more particles (motion subject to constraints)
 - Pulley systems
- Relative motion of two or more particles
 - Relative motion along a line
 - Relative planar motion

E. Dynamics of a Particle (5)

- Newton's Laws for a Single Particle
 - Definition of force
 - Inertial frames of reference
 - Inertial mass
 - When can a finite dimensioned body be considered a particle?
- Newton's Law of Universal Gravitation
 - Historical background
 - Gravitational mass
 - Principle of equivalence
 - Gravitational force of spherical mass distributions
 - Mass and weight
 - Acceleration of gravity, q

- 3. Free body diagrams
 - The equations of motion for a single particle
- Static and kinetic friction
- Rectangular Cartesian components
- Normal and tangential components
- Cylindrical components
- Central force motion
 - Kepler's Laws of planetary motion

F. Systems of Particles (1)

- 1. Extension of Newton's second law for systems of particles
 - Definition of the system being considered
 - Internal and external forces to the system
- 2. Importance of the center of mass of the system of particles

G. Determination of Center of Mass (2)

- 1. Center of mass, center of gravity, centroid
- 2. Center of mass of a system of discrete particles
- Center of mass of a finite dimensioned body. (Use of integration techniques)
- 4. Center of mass of composite bodies

H. Work and Energy (4)

- Work by a force
 - Spring force
 - Gravitational force
 - Weight
 - Friction
- 2. Principle of work and energy for a single particle
- Systems of particles II
 - Extension of work energy principle to a system of particles
- Power and mechanical efficiency
- Conservative forces and potential energy
- Conservation of mechanical energy
- Work-Energy Principle with conservative and non-conservative forces.

Linear Momentum and Impulse (5)

- 1. Definition of linear momentum
 - Newton's second law in terms of linear momentum
- 2. Principle of linear impulse and momentum
 - Definition of impulse of a force
- System of particles III
 - Extension of principle of linear impulse and momentum to a system of particles
- 4. Conservation of linear momentum for a system of particles
- Collisions
 - Definition of coefficient of restitution, e
 - Impacts with two or more particles along a single line
 - Special cases: elastic impacts, e = 1 and plastic impacts e = 0
 - Oblique impacts of two particles

J. Angular Impulse and Angular Momentum (3)

- Definition of angular momentum (moment of momentum)
- Relationship between moment of a force (torque) and rate of change of angular momentum for a system of particles
 - Moments about the center of mass
 - Moments about a fixed point
- Principle of angular impulse and angular momentum for a system of particles
- 4. Conservation of angular momentum

K. Introduction to Dynamics of Rigid Bodies (5)

- Definition of a rigid body
- Equations of motion for a rigid body in planar motion
 - Kinematics of rotational motion
 - Free body diagram
 - Definition of moment of inertia for a body
 - Computation of moment of inertia for simple bodies
 - Newton's Second Law for rotating rigid body
- Kinetic energy for a rigid body
- Angular momentum of a rigid body

Laboratory Work

All laboratory reports are due at the end of the laboratory period. There will be a 25% deduction per day late. No late reports will be accepted after two days.

Schedule

Number	Date	Expt. #	Title
	Sept. 8		High School Calculus Review
1	Sept. 15, 22	1	Graphical Error Analysis
2	Sept. 29, Oct. 6	2	Kinematics
3	Oct. 13, 27	3	Acceleration of Gravity
4	Nov. 3, 10	4	Atwood's Pulley
5	Nov. 17, 24	8	Collision: Ramp
6	Dec. 1, 8	9	Moment of Inertia