GRANDE PRAIRIE REGIONAL COLLEGE

SCIENCE AND TECHNOLOGY DEPARTMENT

Course:

BC 2030 - Introduction Biochemistry I

Prerequisites:

Chemistry 1010, Chemistry 1610 or Chemistry 2610; and

Chemistry 1630 or Chemistry 2630

Sections:

One lecture section will be offered in the fall term.

A2 3(3-0-0) UT

Transferability:

U of A - BIOCH 203

Description:

The course includes: structure and chemistry of the cell; protein

structure and function; enzyme kinetics; chemistry of

carbohydrates; intermediary metabolism.

Requirements:

i). Attendance of lectures/seminars and completion of course work

as outlined in the Academic Guidelines of the College.

ii). Two Midterm Exams

iii), Final Lecture Exam

Evaluation:

Midterm Exam I

- 25%

Midterm Exam II

- 25%

Final Exam

- 50%

Textbook:

Donald Voet and Judith G. Voet, Biochemistry (Second Edition),

John Wiley and Sons Inc. Publishers, 1995.

ISBN: 0-471-58651-X

Introduction Biochemistry I - BC 2030

Topic Outline

Introduction

General introduction and format BC 2030 exams; mark distribution; textbook

2. Introduction to biochemistry

 Description of cells: basic functions; organization, specific cellular organelles, principal chemical constituents

Proteins

1. Ubiquitous nature of proteins in cells; classification; examples of physiological roles

2. Amino acids: chemical structures; review acid/base properties of ampholytes

3. Primary level of protein structure; peptide bond

Amino acid composition analysis; sequence determination methodologies

 Protein folding; forces stabilizing polypeptides; secondary, tertiary, quaternary levels of protein structure

Molecular size and shape characterization; chromatography, electrophoresis

7. X-ray crystallography / 2-D NMR to deduce 3-dimensional structure

8. Overview haemoglobin, myoglobin structure and function

Enzymes

- General characteristics: biological catalysis; activation energetics; specificity; classification
- 2. Enzyme kinetics; Michaelis-Menten equation; Lineweaver-Burk plot

3. Active site of enzymes; coenzymes and cofactors

4. Illustration of mechanism: lysozyme, serine proteinase

 Regulation of enzyme activity: inhibition, competitive / non-competitive; allosterism; covalent modification; zymogen activation, blood clotting

Carbohydrate metabolism

1. Introduction to metabolism

Brief review of carbohydrate chemistry

3. Energy changes in biochemical reactions; ATP; vitamins

Glycolysis

5. Anaerobic and aerobic fates of pyruvate; mitochondria

The citric acid cycle

Electron transport and oxidative phosphorylation; ATP generation; shuttles

8. Pentose phosphate pathway

9. Gluconeogenesis

Glycogen metabolism

Regulation and integration of carbohydrate metabolism; allosterism; hormones

 Other topics of carbohydrate metabolism: glyoxylate pathway; lactose metabolism; sucrose metabolism; diabetic ketoacidosis