Department of Science Grande Prairie Regional College

Biochemistry 3200

Structure and Catalysis

Course Outline 2007-2008

Instructor

Philip Johnson B.Sc., M.Sc., Ph.D., M.S.P.H.

office: J224

phone: 539 2863

e-mail: johnson@gprc.ab.ca

Course Description:

Designed to illustrate, in detail, the relationships between structure and function in biological molecules. It covers: the structure of proteins; techniques used to study proteins; contractile proteins and immunoglobulins as illustrations of protein function; enzyme catalysis, kinetics, and regulation; structural carbohydrates and glycobiology; the structure of lipids; biological membranes and mechanisms of transport; molecular mechanisms in biosignalling.

Pre-requisites:

BC 2000, CH 1020 and CH 2630

Notes:

- 1. Students with grades of less than B- in pre-requisite courses require consent of the department.
- 2. This course may not be taken for credit if credit has already been obtained in BC 2030 or BC 2050.

Transferability:

Biochemistry 320 – University of Alberta

Text-book:

Lehninger Principles of Biochemistry (4th edition) (Chapters 3-7, 10-12)

David Nelson & Michael Cox

W.H. Freeman and Co. (2005) ISBN: 0-7167-4339-6

Requirements:

Since participation in lectures and completion of assignments are essential to achieving success in this course, regular attendance at classes is highly recommended. Those who chose not to attend must assume whatever risks are involved. In this regard, your attention is directed to the Academic Guidelines of Grande Prairie Regional College.

Evaluation:

Mid-term Exam I 30% Mid-term Exam II 30% Final Exam 40%

Mid-term Exam I will test knowledge of material covered in the first third of the course.

Mid-term Exam II will test knowledge of material covered since the first midterm exam.

The Final Exam will be cumulative and test knowledge of the entire course.

BC 3200 – Topic Outline & Required Readings

Hours	Topic	Readings
5	Amino acids, peptides, and proteins	
	Amino acids	
	Amino acids share common structural features	76-77
	Amino acids can be classified by R group	78-80
	Uncommon amino acids	80-81
	Amino acids as acids and bases	81-85
	Peptides and proteins	
	Peptides are chains of amino acids	85-86
	Sizes of biologically active peptides and polypeptides	86-87
	Amino acid composition and additional chemical groups	87-88
	Four levels of protein structure	88
	Working with proteins	
	Separation and purification	7-8
	Column chromatography	89-92
	Electrophoresis	92-95
	Activity and specific activity	94-95
	Covalent structure of proteins	
	Amino acid sequence determines protein function	96-97
	Amino acid sequence determination	97-100
	Other methods of amino acid sequence	100-104
	determination	104 106
	Chemical synthesis of peptides	104-106
	Biochemical information from amino acid sequences	106
	Protein sequences and evolution	106 110
	Protein sequences and evolution	106-110
5	The three-dimensional structure of proteins Overview	
	Weak interactions stabilize protein conformation	116-118
	The peptide bond and Ramachandran plots	118-110
	Protein secondary structure	110-120
	Structure and stability of the α helix	120-122
	β sheets and β turns	123-124
	Characteristic bond angles and amino acid content	124-125
	Characteristic cond ungres und unimo ucid content	12 (125
	Protein tertiary and quaternary structure	
	Tertiary structureand fibrous proteins (inc Box 4-2, 4-3)	125-129
	Tertiary structure and globular proteins	129-135
	Methods for determining the 3-D structure of a protein	Box 4-4
	Common structural patterns in globular proteins	138-141

	Protein structural classification	141-144
	Protein quaternary structure	144-146
	Protein denaturation and folding	
	Denaturation and renaturation of proteins	147-148
	Polypeptide folding	148-151
	Molecular chaperones and assisted folding	151-153
2	Protein function	4 4-0
	Ligands and binding	157-158
	Protein interactions: molecular motors	
	Myosin and actin	182-184
	The organization of thin and thick filaments	184-185
	Sliding filaments and muscle contraction	185-186
6	Enzymes	
	An introduction to enzymes	
	The importance of enzymes	190-191
	Enzymes, cofactors and classification	191-193
	How enzymes work	
	Active sites and reaction coordinate diagrams	193-195
	Thermodynamic definitions- reaction equilibria and rates	195-196
	Catalytic power and specificity of enzymes	196-200
	Types of catalysis	200-202
	Enzyme kinetics and mechanism	
	Substrate concentration and reaction rate (inc Box 6-1)	202-205
	Kinetic parameters used to compare enzyme activities	205-207
	Bisubstrate enzyme-catalyzed reactions	207-208
	Enzyme inhibitors: reversible and irreversible (Box 6-2)	208-212
	Enzyme activity depends on pH	212
	Examples of reactions	
	Chymotrypsin—acylation and deacylation of a serine residue (including Box 6-3)	213-218
	Hexokinase—induced fit on substrate binding	218-219
	Enolase—use of metal ions	219, 222
	Regulatory enzymes	213, 222
	Allosteric enzymes and regulation of pathways	225-227, 167-170
	Kinetic properties of allosteric enzymes	227-228
	Regulation by covalent modification	228-232
4	Carbohydrates and glycobiology (4)	
	Monosaccharides and disaccharides	
	Aldoses, ketoses and stereoisomers	238-240
	Cyclic structures	240-243
	Hexose derivatives	243-244
	Disaccharides contain a glycosidic bond	245-246
	Polysaccharides Polysaccharides	213 210
	Homopolysaccharides	247-250
	Homopolysaccharide folding	250-252
	Heteropolysaccharides	252-255

	Glycoconjugates: proteoglycans, glycoproteins, and glycoli	•	
	Proteoglycans	255-259	
	Glycoproteins and glycolipids	258-261	
	Carbohydrates as informational molecules	262 267	
	Lectins and the "sugar code"	262-267	
	Working with carbohydrates	267-268	
	Glycosylation and protein targetting	1068-1071	
3	Lipids		
	Storage lipids		
	Fatty acids: structure, properties and nomenclature	343-345	
	Triacylglycerols—stored energy and insulation	345-347	
	Waxes	348	
	Membrane lipids		
	Glycerophospholipids	349-350	
	Galactolipids	351	
	Sphingolipids	352-353	
	Sterols (cholesterol)	354-355	
	Lipids as signals, cofactors and pigments – introduction		
6	Biological membranes and transport		
	The composition and architecture of membranes		
	Membranes contain characteristic lipids and proteins	370-371	
	The lipid bilayer	371-373	
	Integral and peripheral membrane proteins	373-375	
	Predicting the topology of an integral membrane protein	376-378	
	Anchoring proteins with covalently attached lipid	379	
	Membrane dynamics		
	The ordering of acyl groups in a bilayer	380-381	
	Transbilayer movement (flip-flop) of lipids	381-382	
	Lateral diffusion of lipids and proteins in a bilayer	382-383	
	Membrane rafts	383-385	
	Cell-cell interactions and adhesion—integrins and cadherins	385-386	
	Membrane fusion	387-389	
	Solute transport across membranes		
	Introduction—types of transport	389-393	
	Facilitated diffusion by transporter proteins e.g. the glucose transporter (GLUT I)	393-395	
	Primary active transport e.g. Na K ATPase	397-400	
	Secondary active transport e.g. the lactose	402-406	
	transporter; the glucose-Na symporter		
	Ionophores e.g. valinomycin	406	
	Aquaporins	406-408	
5	Biosignalling		
	Molecular mechanisms of signal transduction		
	Biological signals	421	

Overview of molecular mechanism (specificity,	422-424		
amplification, desensitization, integration)			
Six fundamental signaling systems	424		
Lipids as signals, cofactors and pigments			
Phosphatidylinositols and sphingosine derivates as	357-358, 442-443		
intracellular signals			
Eicosanoids—paracrine hormones	358-359		
Steroid hormones	359-360, 465-466		
Vitamins A and D—hormone precursors	360-362		
Vitamins E and K	362-363		
Gated ion channels			
Gated ion channels underlie electrical signaling in	425-426		
excitable cells			
Acetylcholine receptor, a ligand-gated ion channel	411-415, 426-427,		
Receptor enzymes			
The insulin receptor—a tyrosine-specific protein	429-430		
kinase			
G-protein coupled receptors and second messengers			
The β-adrenergic receptor system and cAMP	435-439		
De-sensitization	439-441		
Second messengers	441-445		
Sensory transduction in vision, olefaction and gustation			
Light and the visual signal	456-459		
Olefaction and gustation	460-462		
G protein-coupled systems share several features	462-464		