

DEPARTMENT OF SCIENCE

COURSE OUTLINE – WINTER 2018

BC3200 (A3): Structure and Catalysis - 3 (3-0-0) 45 Hours for 15 Weeks

INSTRUCTOR:Philip JohnsonPHONE:780-539-2863OFFICE:J224E-MAIL:PJohnson@gprc.ab.caOFFICE HOURS:Mondays 1130-1300; Tuesdays & Thursdays 1000-1120

CALENDAR DESCRIPTION: The relationships between structure and function in biological molecules will be illustrated in detail. The course covers the structure of proteins; techniques used to study proteins; contractile proteins and immunoglobulins as illustrations of protein function; enzyme catalysis' kinetics and regulation; structural carbohydrates and glycobiology; the structure of lipids; biological membranes and mechanisms of transport; molecular mechanisms in biosignalling.

PREREQUISITE(S)/COREQUISITE: BC 2000, CH 1020 and CH 2630

REQUIRED TEXT/RESOURCE MATERIALS:

Chapters 3-7, 10-12 Lehninger Principles of Biochemistry (5th Edition) David Nelson & Michael Cox W.H. Freeman and Company 2008 (The 4th Edition (2005) of this text is also acceptable)

DELIVERY MODE(S): Classes: Mondays & Wednesdays 0830-0950

COURSE OBJECTIVES:

- **1.** Appreciation of the relationship between molecular structure and function in respect to biological systems.
- 2. To develop critical thinking skills regarding biochemistry

LEARNING OUTCOMES:

- 1. Knowledge of structure, properties and functions of biological molecules
- 2. Knowledge of techniques used to isolate and analyze biological molecules
- 3. Knowledge of structure and role of biological membranes
- 4. Understanding of the mechanisms used by cells to respond to stimuli

TRANSFERABILITY: Biochemistry 320 (University of Alberta) Notes: 1. Students with grades of less than B- in pre-requisite courses require consent of the instructor to enroll in BC 3200. 2. BC 3200 may not be taken for credit if credit has already been obtained in BC 2030 or BC 2050.

A list of institutions to which this course transfers (For example: UA, UC, UL, AU, GMU, CU, CUC, KUC. Please note that this is a sample and it must be replaced by your specific course transfer)

*Warning: Although we strive to make the transferability information in this document up-to-date and accurate, the student has the final responsibility for ensuring the transferability of this course to Alberta Colleges and Universities. Please consult the Alberta Transfer Guide for more information. You may check to ensure the transferability of this course at Alberta Transfer Guide main page http://www.transferalberta.ca or, if you do not want to navigate through few links, at http://alis.alberta.ca/ps/tsp/ta/tbi/onlinesearch.html?SearchMode=S&step=2

** Grade of D or D+ may not be acceptable for transfer to other post-secondary institutions. **Students** are cautioned that it is their responsibility to contact the receiving institutions to ensure transferability

EVALUATIONS:	Mid-term Exam I	30%	
	Mid-term Exam II	30%	
	Final Exam	40%	

GRADING CRITERIA: Please note that most universities will not accept your course for transfer credit **IF** your grade is **less than C-**.

Alpha Grade	4-point Equivalent	Percentage Guidelines	Alpha Grade	4-point Equivalent	Percentage Guidelines
A+	4.0	90-100	C+	2.3	67-69
А	4.0	85-89	С	2.0	63-66
A-	3.7	80-84	C-	1.7	60-62
B+	3.3	77-79	D+	1.3	55-59
В	3.0	73-76	D	1.0	50-54
B-	2.7	70-72	F	0.0	00-49

COURSE SCHEDULE/TENTATIVE TIMELINE:

	SE SCHEDULE/TENTATIVE TIMELINE:	Text readings	
week	topic	4 th edition	5 th edition
1	Amino acids, peptides and proteins		
	Amino acids		
	Common structural features	76-77	72-74
	Classification by R-group	78-80	74-77
	Uncommon amino acids	80-81	77-78
	Functions as acids and bases	81-85	78-81
	Peptides and proteins		
	Composition of peptides	85-86	82
	Sizes of active peptides and polypeptides	86-87	83-84
	Composition and additional chemical groups	87-88	84
	Levels of protein structure	88	92
2	Working with proteins		
	Separation, purification and column	7 9 90 02	700500
	chromatography	7-8, 89-92	7-8, 85-88
	Electrophoresis	92-95	88-91
	Activity and Specific Activity	94-95	91-92
	Covalent Structure of proteins		
	Primary structure determines function	96-97	93
	Sequence determination	97-104	93-100
	Chemical synthesis of peptides	104-106	100-102
	Biochemical information from primary sequence	106	
	Primary sequence and evolution	106-110	
3	Three-dimensional structure of proteins		
	Overview		
	Stabilization of protein conformation	116-118	113-115
	Peptide bonds and Ramachandran Plots	118-120	115-117
	Protein Secondary structure		
	Structure and stability of the α -helix	120-122	117-120
	β -sheets and β -turns	123-124	120-121
	Bond angles and amino acid content	124	121-123
	Tertiary and Quarternary structure		
	Fibrous proteins (inc. Boxes 4-2 & 4-3)	125-129	123-129
	Globular proteins	129-135	129-131
	Determination of 3-D structure	Box 4-4	Box 4-5

	Structural patterns in globular proteins	138-141	131-136
	Structural classification	141-144	136-138
	Quarternary structure	144-146	138-140
	Denaturation and folding	111110	100 110
	Denaturation and renaturation	147-148	140-142
	Polypeptide folding	148-151	142-143
	Chaperones and assisted folding	151-153	143-145
4	Protein functions, interactions, molecular motors	151 155	115 115
•	Ligands and binding	157-158	153-154
	Myosin and actin	182-184	175-176
	Thin and thick filaments	184-185	176-177
	Sliding filaments and muscle contraction	185-186	178-179
5	MID-TERM EXAM I	105-100	170-177
6	Enzymes		
0	Introduction		
	Importance of enzymes	190-191	183
	Enzymes, cofactors and classification	191-193	183-185
	How enzymes work	171-175	105-105
	Active sites, reaction coordinate diagrams	193-195	186-188
	Definitions – reaction equilibria and rates	195-196	188
	Catalytic power and enzyme specificity	196-200	188-192
	Types of catalysis	200-202	192-194
7	Enzyme kinetics and mechanisms	200-202	172-174
/	Enzyme kineties and meenanisms	202-205,	194-197,
	Substrate concentration and reaction rates	Box 6-1	Box 6-1
	Kinetic parameters for comparing activity	205-207	197-200
	Bisubstrate enzyme-catalyzed reactions	207-208	200
	Disubstrate enzyme-cataryzed reactions	207-208	200
	Enzyme inhibitors	Box 6.2	Box 6-2
	Activity and pH	212	204
	Examples	212	204
	Chymotrypsin	213-218	205-211
	Hexokinase	213-218	203-211
	Enolase	218-219	212
	Regulatory enzymes	219 & 222	213
	Allosteric enzymes and pathway regulation	225-227	220-222
		223-227	220-222
	Kinetic properties of allosteric enzymes		
	Regulation by covalent modification	228-232	223-227

8	Carbohydrates and glycobiology				
	Monosaccharides and disaccharides				
	Aldoses, ketoses and stereoisomers	238-240	235-238		
	Cyclic structures	240-243	238-239		
	Hexose derivatives	243-244	240-241		
	Glycosidic bonds	245-246	243-244		
	Polysaccharides				
	Homopolysaccharides	247-250	244-247		
	Homopolysaccharide folding	250-252	247-248		
	Heteropolysaccharides	252-255	249-252		
9	Glycoconjugates				
	Proteoglycans, glycoproteins, glycolipids	255-261	252-257		
	Carbohydrates as informational molecules				
	Lectins and the "sugar code"	262-267	258-263		
	Working with carbohydrates	267-268	263-265		
	Glycosylation and protein targetting	1068-1071	1100-1104		
10	MID-TERM EXAM 2				
11	Lipids				
	Storage lipids				
	Fatty acids	343-345	343-345		
	Triacylglycerols	345-348	346-348		
	Waxes	348	349		
	Membrane lipids				
	Glycerophospholipids	348-350	349-352		
	Galactolipids	351	352		
	Sphingolipids	352-354	352-355		
	Sterols (cholesterol)	354-355	355-357		
	Lipids as signals, cofactors and pigments	357	357		
12	Biological membranes and transport				
	Composition and architecture of membranes				
	Characteristic lipids and proteins	369-371	371-373		
	Lipid bilayer	371-373	373-374		
	Integral and peripheral proteins	373-375	375-377		
	Topology of integral proteins	376-378	378-379		
	Covalent attachment of proteins to lipids	379	379-380		
	Membrane dynamics				
	Ordering of acyl groups in a bilayer	380-381	381		

	Transbilayer movement of lipids	381-382	381-383
	Lateral diffusion of lipids and proteins	382-383	383-384
	Membrane rafts	383-385	384-386
	Cell-to-cell interactions and adhesion	385-386	388
	Membrane fusion	387-389	387-388
13	Solute transport across membranes		
	Types of transport	389-393	389-391
	Facilitated diffusion	393-395	391-393
	Primary active transport	397-400	395-399
	Secondary active transport	402-406	400-404
	Ionophores (valinomycin)	406	404
	Aquaporins	406-408	404-406
14	Biosignalling		
	Mechanisms of signal transduction		
	Biological signals	421	419
	Overview of mechanisms	422-424	419-420
	Fundamental signaling systems	424	420-424
	Lipids as signals, cofactors and pigments		
	Phosphatidylinositol and sphingosine	257 259 442	357-358,
	derivatives	357-358, 442	432-433
	Eicosanoids – paracrine hormones	358-359	358-359
		359-360,	250 456 457
	Steroid hormones	465-466	359, 456-457
	Vitamins A & D – hormone precursors	360-362	360-361
	Vitamins E & K	362-363	361-362
15	Gated ion channels		
	Electrical signaling	425-426	449-451
	Acetylcholine receptor (ligand-gated)	426-427	453
	Receptor enzymes		
	Insuline receptor (tyrosine kinase)	429-430	439
	G-protein receptors and second messengers		
	β-adrenergic receptor and cAMP	435-439	423-430
	Desensitization	439-441	430-431
	Second messengers	441-445	431-439
	Vision, olfaction and gustation		
	Light and the visual signal	456-459	461-465
	Olfaction and gustation	460-462	465-467
	Common features of G-protein systems	462-464	467-469

STUDENT RESPONSIBILITIES:

Refer to the College Policy on Student Rights and Responsibilities at www.gprc.ab.ca/d/STUDENTRIGHTSRESPONSIBILITIES

If you are absent from an exam, you MUST notify the instructor of your absence (by email or voice message) on the day of the missed exam, or as soon as possible after. Also you may be asked to provide a doctor's certificate or a verification that explains your absence for that particular time. Only then will an alternate time be scheduled for you to write a different exam.

Attendance:

Students are expected to attend all classes and complete all assignments and tests.

STATEMENT ON PLAGIARISM AND CHEATING:

Cheating and plagiarism will not be tolerated and there will be penalties. For a more precise definition of plagiarism and its consequences, refer to the Student Conduct section of the College Calendar at <u>http://www.gprc.ab.ca/programs/calendar/</u> or the College Policy on Student Misconduct: Plagiarism and Cheating at <u>https://www.gprc.ab.ca/about/administration/policies</u>

**Note: all Academic and Administrative policies are available on the same page.