Department of Science Grande Prairie Regional College # Biochemistry 3300 Nucleic Acid Chemistry & Molecular Biology Course Outline 2006-2007 ### <u>Instructor</u> Philip Johnson B.Sc., M.Sc., Ph.D., M.S.P.H. office: J224 phone: 539 2863 e-mail: johnson@gprc.ab.ca Course Description: Th This course is intended to provide students with a comprehensive introduction to the biochemistry of nucleic acids. It covers the structure and properties of nucleotides and nucleic acids; DNA-based information technologies; genes and chromosome structure; molecular mechanisms in DNA replication, repair and recombination; RNA metabolism; protein synthesis and targeting; the regulation of gene expression. Pre-requisites: BC 2000, CH 1020 and CH 2630 Notes: 1. Students with grades of less than B- in pre-requisite courses require consent of the department. 2. This course may not be taken for credit if credit has already been obtained in BC 2030 or BC 2050. Transferability: Biochemistry 330 – University of Alberta Text-book: Lehninger Principles of Biochemistry (4th edition) David Nelson & Michael Cox W.H. Freeman and Co. (2005) Requirements: Since participation in lectures and completion of assignments are essential to achieving success in this course, regular attendance at classes is highly recommended. Those who chose not to attend must assume whatever risks are involved. In this regard, your attention is directed to the Academic Guidelines of Grande Prairie Regional College. Evaluation: Mid-term Exam I 30% Mid-term Exam II 30% Final Exam 40% Mid-term Exam I will test knowledge of material covered in the first third of the course. Mid-term Exam II will test knowledge of material covered since the first mid- term exam The Final Exam will be cumulative and test knowledge of the entire course. ## BC 3300 – Topic Outline & Required Readings | Hours | Topic | Readings | |-------|--|--| | 2 | Nucleotides and Nucleic Acids | | | | Basics | | | | Bases Ribo- and deoxyribonucleosides and nucleotides Phosphodiester bonds 5' and 3' ends hydrolysis of nucleic acids sequence conventions functional groups on bases; hydrogen bonds storage of genetic material | 274
274-276
276
277
277
278
279
280-281 | | | Nucleic Acid Structure | | | | Distinctive base composition (Chargoff's Rules) Antiparallel nature and complementary strands 3-D forms of DNA (B, A and Z forms) unusual structures in DNA Structure of RNA | 281
282-283
283-285
285-287
287-290 | | | Nucleic Acid Chemistry | | | | Denaturation of double-helices Induced & spontaneous alterations of chemical structure methylation | 291-293
293-295
296 | | 1 | Biosynthesis and Degradation of Nucleotides | | | | Purine Nucleotides | | | | De novo synthesis (PRPP) regulation | 864-866
866-867 | | | Pyrimidine Nucleotides | 0.5 | | | De novo synthesis (PRPP) regulation | 867-868
868 | | | General Conversion of NMP to NTP | 969 960 | | | Deoxynucleotides from ribonucleotides Ribonucleotide reductase Production of thymidylate | 868-869
869
869-872
872-873 | | | Catabolism | | | | Global overview (uric acid vs. ammonia
Salvage pathways for recycling bases
Lesch-Nyhan Syndrome
Gout
Chemotherapy | 873-875
875
875
875-876
876-878 | #### 3 Genes and Chromosomes | | The Central Dogma | 921-922 | |---|--|--| | | Chromosomes and Chromosomal Elements | | | | Tertiary packing of DNA into chromosomes Chromosomal elements; genes and regulatory sequences Compacting DNA; viruses, bacteria, eukaryotes Eukaryotic genes and chromosomes (intron, exons, SSRs, centromeres, telomeres) | 923
924
925-928
928-930 | | | DNA Supercoiling | J 2 0 J 2 0 | | | Theory Cellular DNA is underwound Topological linking number and topoisomerases Plectonemic vs solenoidal | 930-932
932-933
933-937
937-938 | | | Chromosome Structure | | | | Chromatin Histones Nucleosomes High order packing of nucleosomes Condensed chromosome structures Bacterial DNA and nucleoids | 938-939
939
940-941
942-943
943 | | 8 | DNA Metabolism | | | | Overview | | | | The enzymes of replication <i>E. coli</i> proteins involved in DNA metabolism Naming of bacterial genes and proteins | 948-950
949
949 | | | DNA Replication | | | | Fundamental rules of replication Nucleases Pol I and DNA polymerases | 950-952
952
952-955
955-957
957-958
958-960
960-963
962-964
964-966
466-467 | | | Mutations and cancer | 966-967 | | | Multiple repair systems in all cells | 967 | | | Ismatch repair Base-excision repair Nucleotide-excision repair Direct repair SOS response Bacterial reglation DNA Recombination | 968-971
971-972
972-973
974-976
976-978 | |---|---|--| | | Introduction Homologous genetic recombination Mechanism of recombination in bacteria Repairing stalled replication forks Site-specific recombination Transposable genetic elements / immunoglobulin gene assembly | 978
979-984
984
984-988
988-991 | | 5 | RNA Metabolism | | | | Overview | | | | RNA, transcription, mRNA, tRNA, rRNA | 995-996 | | | DNA-dependant Synthesis of RNA | | | | Compared with replication RNA polymerases and RNA synthesis Promoters, initiation and elongation Termination DNA footprinting Eukaryotic cells and three RNA polymerases RNA Pol II | 996
996-998
998-1001
1001-1003
1002
1003
1003-1006 | | | RNA processing | | | | Introduction mRNA capping introns / exons and splicing the 3' end differential processing RNA-dependant Synthesis of RNA and DNA | 1007-1008
1008
1008-1012
1011-1014
1014-1015 | | | Introduction Reverse transcriptase Cancer and AIDS Common evolutionary origin of transposons, retroviruses, introns Telomerase (specialized reverse transcriptase) | 1021
1021-1022
1023-1024
1023-1025
1025-1027 | | 4 | Protein Metabolism | | | | Overview | 1034 | | | The Genetic Code | | | | Introduction Reading frames, ORFs, codons, degeneracy | 1034-1035
1035-1039 | | | Wobble Hypothesis Translational frameshifting and mRNA editing (Box) Variations in the genetic code (Box) | 1039-1044
1040-1041
1042-1043 | |---|--|--| | | Protein Synthesis Introduction to the five stages The ribosome tRNA structure attaching amino acids to tRNAs initiation tRNA in prokaryotes and eukaryotes formation of initiation complex in <i>E. coli</i> initiation in eukaryotes elongation and peptide bonds termination energy cost of protein synthesis polysomes and rapid translation antibiotic inhibitors of protein synthesis | 1044-1045
1045-1049
1049-1050
1051-1054
1054-1056
1056-1057
1057-1058
1058-1061
1061
1061
1062-1063
1065-1067 | | 7 | Regulation of Gene Expression | 1002 1007 | | | Principles of Gene Regulation Cellular steady-state concentrations of protein RNAP binding to promoters (housekeeping vs regulated genes) Regulation of initiation (specificity factors, repressors, activators, enhancers) Regulation of operons (lac operon and negative regulation) DNA-binding domains Helix-turn-helix Zinc-finger Homeodomain Protein-protein interaction domains Leucine zipper Basic helix-loop-helix | 1081-1082
1082-1083
1083-1084
1084-1087
1087-1088
1088-1089
1090
1090
1090
1091 | | | Regulation of gene expression in Procaryotes Lac operon and positive regulation (catabolite repression) Trp operon and attenuation SOS response (coordinated gene expression) Translational regulation | 1093-1094
1094-1097
1097-1098
1098-1099 | | | Regulation of gene expression in eukaryotes Eukaryotes have a restricted ground state Chromatin remodelling Eukaryotic promoters are positively regulated Basal transcription factors, transactivators, coactivators Regulation by inter- and extracellular signals Eg. Regulation by steroid hormones Translational repression RNAi | 1102
1103
1103-1104
1104-1105
1108-1109
465-466
1108-1109
1109-1111 | #### 5 DNA-based Information Technologies | 296-298
298-299
306-308
307-310
311-314
314-315
315-316
316-317 | |--| | | | 318-319
319-321
321-325
322-323 | | | | 325-326
326-329
327-330 | | | | 330-333
333-335
336-337 | | |