GRANDE PRAIRIE REGIONAL COLLEGE DEPARTMENT OF SCIENCE AND TECHNOLOGY 1999/2000 CHEMISTRY 1010: Introductory University Chemistry I PREREQUISITE: Chemistry 30 or equivalent INSTRUCTORS: A2 Barry Ramaswamy Office J218 539-2072 B2 Les Rawluk Office J214 539-2738 C2 Les Rawluk Office J214 539-2738 TEXT BOOK: CHEMISTRY Raymond Chang WCB/McGraw-Hill ©1998 LABORATORY: Chemistry 101 Experiments, University of Alberta, 1999/2000 Lab coats and safety glasses are compulsory, and are avail- able at the Bookstore. A Laboratory Breakage Deposit of \$30 per Chemistry course must be paid to the Cashier (Room C315), and the receipt must be shown to the Laboratory Technician (Mrs. Omana Pillay) during the first Laboratory class. SEMINAR: Seminars consist of problem solving, discussion of lecture materials, and a brief introduction to the upcoming Laboratory experi- ment. ## COURSE EVALUATION | October Midtern | n |
20% | |-----------------|------|---------| | November Midte | erm |
20% | | Final Exam | |
38% | | Assignments | |
2% | | Laboratory Rep | orts |
10% | | Laboratory Exam | m |
10% | Assignments will be distributed on a weekly basis. Completion of assignments is essential to succeed in the course. Attendance to all lectures and seminars is strongly recommended. Laboratory attendance to each specific experiment is compulsory; a passing grade in the laboratory component is required to pass the course. A doctor's medical note is required for all excused absences! Students are required to maintain an overall average of 50% or better to pass the course. ## CH1010 COURSE CONTENT | A: | A.1
A.2
A.3
A.4
A.5
A.6
A.7 | Empirical and molecular formula of a | s compound | 4 Pages 2-153 | |--------|---|---|--------------------|---------------| | Bı | B.4
B.5 | Gas laws of Boyle, Charles, and Avog
Ideal gas law
Gas stoichiometry
Partial pressures
Kinetic molecular theory
Diffusion and Effusion
Real gases | Chapter 5 | Pages 154-201 | | C: | C.1
C.2
C.3
C.4 | ical Equilibrium Equilibrium condition Mass-action expression and the couli | brium constant | Pages 558-595 | | D: | Acids
D.1
D.2
D.3
D.4 | and Bases The nature of acids and bases Acid strength and the pH scale Calculating the pH of strong/weak as Bases | Chapters 15 and 16 | Pages 596-691 | | | D.6
D.7
D.8
D.9
D.10 | Salts Mixtures of weak acids and bases Common ion effect Buffer systems Acid/base titrations Slightly soluble salts Complex ion equilibria | * (i | 12 | | E: | Atomi
E.1 | c Structure Electromagnetic radiation Atomic spectra and the Bohr model Quantum mechanics and the atom Orbital shapes and energies Many-electron atoms Building of the periodic table Trends in atomic properties | Chapters 7 and 8 | Pages 242-327 | | Option | al | \$x #37.000 | | | | F: | F.1
F.2
F.3 | stry of the Main Group Elements Alkali metals Alkaline earths Halogens Noble gases Other main group elements | Chapters 20 and 21 | Pages 816–869 |