GRANDE PRAIRIE REGIONAL COLLEGE DEPARTMENT OF SCIENCE AND TECHNOLOGY 1997/98

CHEMISTRY 1010: Introductory University Chemistry I

PREREQUISITE: Chemistry 30 or equivalent

INSTRUCTOR: Les Rawluk Office J214 539-2738

TEXT BOOK: CHEMISTRY The Molecular Nature of Matter and Change

Martin Silberberg

Mosby, Toronto ©1996

LABORATORY: Chemistry 101/102 Experiments, University of Alberta, 1997/98

Lab coats and safety glasses are compulsory, and are avail-

able at the Bookstore.

A Laboratory Breakage Deposit of \$30 per Chemistry course must be paid to the Cashier (Room C315), and the receipt must be shown to the Laboratory Technician (Mrs. Omana Pillay) during

the first Laboratory class.

SEMINAR: Seminars consist of problem solving, discussion of weekly problem sets, quizzes, and a brief introduction to the upcoming Laboratory

experiment.

COURSE EVALUATION

October Midterm November Midterm	October 8, 1997
December Exam Assignments and Qu	zzes
Laboratory	
Total	

Assignments will be distributed on a weekly basis. Completion of assignments is essential to successfully understanding the course.

Attendance to all lectures and seminars is strongly recommended. Laboratory attendance to each specific experiment is compulsory; a passing grade in the laboratory component is required to pass the course. A doctor's medical note is required for all excused absences!

Students are required to maintain an overall average of 50% or better to pass the course.

CH1010 COURSE CONTENT

A:	Matt. A.1 A.2 A.3 A.4 A.5 A.6 A.7 A.8	Calculations involving a limiting reag Aqueous solutions and molarity	and	, 4 Pages 1-171
В	B.1 B.2 B.3 B.4 B.5	ic Structure Electromagnetic radiation Atomic spectra and the Bohr model Quantum mechanics and the atom Orbital shapes and energies	Chapters 7 and 8	Pages 255-323
C:	C.3 C.4	Gas laws of Boyle, Charles, and Avog Ideal gas law Gas stoichiometry Partial pressures Kinetic molecular theory	Chapter 5 adro	Pages 172-219
D:	D.1 D.2 D.3 D.4	Mass-action expression and the equili- Heterogeneous equilibria		Pages 694-735
E:	Acids E.1 E.2 E.3 E.4 E.5 E.6 E.7 E.8 E.9 E.10	and Bases The nature of acids and bases Acid strength and the pH scale	Chapters 17 and 18	Pages 736–836
Option		1		
	Descri F.1 F.2 F.3 F.4	ptive Chemistry of the Main Group El Alkali metals Alkaline earths Halogens Noble gases Other main group elements	ements Chapter 13	Pages 520-584