

DEPARTMENT OF SCIENCE

COURSE OUTLINE – WINTER 2016

CH1010 (A3): Introductory University Chemistry I – 3(3-1-3) 105 Hours

for 15 weeks

INSTRUCTOR:	A3 Les Rawluk	PHONE:	780 539 2738 (office)	
			780 897 1051 (cell)	
OFFICE:	J214	E-MAIL:	lrawluk@gprc.ab.ca	

OFFICE HOURS: Monday to Thursday 10:00 - 11:30

CALENDAR DESCRIPTION: Lectures include stoichiometry, atomic structure and bonding, states of matter and intermolecular forces, chemistry of the elements.

PREREQUISITE(S)/COREQUISITE: Chemistry 30 or equivalent

TEXT/RESOURCE MATERIALS: Recommended textbook is Chemistry 9th Edition by Steven S. Zumdahl and Susan A. Zumdahl; required Lab manual is Introductory University Chemistry I (Chem 101 and 103), published by the University of Alberta, 2015/2016 edition.

DELIVERY MODE(S): Lecture style presentation of material followed by practice problems/discussion in seminar. Laboratory provides hands-on experience.

COURSE OBJECTIVES: This course enables students to strengthen their understanding of chemistry through the study of the structure, bonding, and reactivity of chemical substances. Students will further develop their problem-solving and critical thinking skills as they investigate chemical processes, and will refine their ability to communicate scientific information. Emphasis will be placed on understanding of basic principles and the ability to apply principles to solve problems.

LEARNING OUTCOMES: Students will use their introduction to quantum mechanics to describe the Hydrogen atom. They will extend this knowledge to a multi-electron atom, followed by predicting trends in atomic properties as related to atomic position on the periodic table. Students will identify valence electrons, and examine their role in ionic, covalent, and polar covalent bonding. Valence electron role in the 3-D shape of molecules will be explored, and students will be able to predict molecular properties such as melting and boiling point trends, polarity, and viscosity. Students will interpret intermolecular forces for a variety of molecules, and link these forces to the solid, liquid, and vapor states. Students will observe and describe trends in main group element chemistry throughout the course.

TRANSFERABILITY: AU, CUC, KUC, MU, UC, UA, UL

*Warning: Although we strive to make the transferability information in this document up-to-date and accurate, the student has the final responsibility for ensuring the transferability of this course to Alberta Colleges and Universities. Please consult the Alberta Transfer Guide for more information. You may check to ensure the transferability of this course at the Alberta Transfer Guide main page http://www.transferalberta.ca or, if you do not want to navigate through a few links, at http://alis.alberta.ca/ps/tsp/ta/tbi/onlinesearch.html?SearchMode=S&step=2

** Grade of D or D+ may not be acceptable for transfer to other post-secondary institutions. Students are cautioned that it is their responsibility to contact the receiving institutions to ensure transferability.

EVALUATIONS: Two term exams will be held (one in February weighted at 15%, one in March weighted at 20%); a final exam is scheduled by Student Services in April and weighted at 38%; weekly quizzes/assignments are weighted at 5%; laboratory reports are weighted at 12%; laboratory exam is weighted at 10%. A student must pass the laboratory portion to receive a passing grade in this course. A "repeat" final exam is not available in this course.

GRADING CRITERIA:

Please note that most universities will not accept your course for transfer credit **IF** your grade is **less than C**-.

Alpha	4-point	Percentage	Alpha	4-point	Percentage
Grade	Equivalent	Guidelines	Grade	Equivalent	Guidelines
A+	4.0	90-100	C+	2.3	67-69
А	4.0	85-89	С	2.0	63-66
A-	3.7	80-84	C-	1.7	60-62
B+	3.3	77-79	D+	1.3	55-59
В	3.0	73-76	D	1.0	50-54
B-	2.7	70-72	F	0.0	00-49

COURSE SCHEDULE/TENTATIVE TIMELINE:

Matter and Stoichiometry (Chapters 1, 2, 3, 4, and 20; Pages 1 – 188, and 926 – 971) 2 – 3 lectures Units, dimensional analysis Periodic table Naming simple compounds The mole Empirical and molecular formula of a compound Calculations involving a limiting reagent Aqueous solutions and molarity Precipitation, acid/base, redox reactions Atomic Structure (Chapters 2 and 7; Pages 47 – 59 and Pages 295 – 350) 6 – 8 lectures Introduction to Atomic Structure **Electromagnetic radiation** Atomic spectra and the Bohr model Quantum mechanics and the atom Orbital shapes and energies Many-electron atoms Building of the periodic table Trends in atomic properties Chemical Bonding (Chapters 8 and 9; Pages 351 – 452) 6 – 8 lectures Types of chemical bonds and electronegativity Ionic bonding Lattice energy Covalent bonding Bond energies and chemical reactions Lewis structures; octet rule; resonance, formal charge, exceptions VSEPR theory and molecular shape Hybridization Molecular orbital theory States of Matter (Chapters 5 and 10; Pages 189 – 244 and Pages 453 – 509) 4 – 6 lectures Intermolecular forces Gases Liquids, solutions Solids Changes of state, phase diagrams Chemistry of the Main Group Elements (Chapter 20; Pages 926 – 971) 1 – 2 lectures Metals vs. Non-metals Acid base properties of oxides Oxidizing and reducing agents

STUDENT RESPONSIBILITIES: Assignments will be electronically distributed on a roughly weekly basis. Complete solutions will be available a short while later. Solutions to quizzes will be posted a few days after the quiz is completed. Attendance to all lectures and seminars is strongly recommended. Laboratory attendance to each specific experiment is compulsory. A doctor's medical note is required for all excused absences.

Students must maintain an overall average of 50% or better to pass this course. You are encouraged to participate in class discussions and ask questions. Help is available outside the classroom.

STATEMENT ON PLAGIARISM AND CHEATING:

Cheating and plagiarism will not be tolerated. For a more precise definition of plagiarism and its consequences, refer to the Student Conduct section of the College Admission Guide at <u>http://www.gprc.ab.ca/programs/calendar/</u> or the College Policy on Student Misconduct: Plagiarism and Cheating at <u>www.gprc.ab.ca/about/administration/policies/</u> **

**Note: all Academic and Administrative policies are available on the same page.