

DEPARTMENT OF SCIENCE

COURSE OUTLINE – WINTER 2013

CS3060 - INTRODUCTION TO DIGITAL IMAGE PROCESSING - 3 (3-0-3) 90 HOURS

INSTRUCTOR: Libero Ficocelli **PHONE:** 780 539 - 2825

David Gregg 780 539 - 2976

OFFICE: C424 **E-MAIL:** LFicocelli@gprc.ab.ca

C427 **E-MAIL:** DGregg@gprc.ab.ca

OFFICE HOURS: TBA

PREREQUISITE(S)/COREQUISITE: CS2010

REQUIRED TEXT/RESOURCE MATERIALS:

Digital Image Processing Third Edition

Rafael C. Gonzalez

Richard E. Woods

Prentice Hall

CALENDAR DESCRIPTION:

Introduction, history, and applications of image processing; scanning and quantization; visual perception; output devices; pattern recognition; feature extraction; decision theory; classification rules; data representation and formats; image enhancement and restoration; edge detection; segmentation and texture; correlation and registration.

CREDIT/CONTACT HOURS: 3 (3-0-3) 90 Hours

DELIVERY MODE(S): In class lecture

OBJECTIVES (OPTIONAL):

TRANSFERABILITY: University of Alberta, University of Calgary, University of Lethbridge, Athabasca University

GRADING CRITERIA:

** Grade of D or D+ may not be acceptable for transfer to other post-secondary institutions.

GRANDE PRAIRIE REGIONAL COLLEGE			
GRADING CONVERSION CHART			
Alpha Grade	4-point	Percentage	Designation
	Equivalent	Guidelines	
$\mathbf{A}^{^{+}}$	4.0	90 – 100	EXCELLENT
Α	4.0	85 – 89	
A ⁻	3.7	80 – 84	FIRST CLASS STANDING
B ⁺	3.3	77 – 79	
В	3.0	73 – 76	GOOD
B ⁻	2.7	70 – 72	
C ⁺	2.3	67 – 69	SATISFACTORY
С	2.0	63 – 66	
C ⁻	1.7	60 – 62	
D⁺	1.3	55 – 59	MINIMAL PASS
D	1.0	50 – 54	
F	0.0	0 – 49	FAIL
WF	0.0	0	FAIL, withdrawal after the deadline

Students are cautioned that it is their responsibility to contact the receiving institutions to ensure transferability

EVALUATIONS:

Lab Assignments: 32%

Exams: 68% (4 exams - 17% each)

STUDENT RESPONSIBILITIES:

The Student must pass the theory/concepts portion of the course in order to obtain a
passing grade for the term. In other words, a student must obtain 34 out of a possible 68
points from the exam components only, lab assignments are not counted.

STATEMENT ON PLAGIARISM AND CHEATING:

Refer to the Student Conduct section of the College Admission Guide at http://www.gprc.ab.ca/programs/calendar/ or the College Policy on Student Misconduct: Plagiarism and Cheating at www.gprc.ab.ca/about/administration/policies/**

COURSE SCHEDULE/TENTATIVE TIMELINE:

Image Fundamentals:

visual perception, sampling and quantization, pixel relations and imaging geometry

Image Transforms:

Fourier transforms, Hough Transforms, Wavelets

Image Enhancement:

histogram-modification techniques, smoothing and sharpening, pseudo-color

Image Restoration:

algebraic approach, inverse filtering, geometric transformations

Image Compression:

encoding process and criteria, lossless and lossy compression

Image Segmentation:

thresholding, edge detection, boundary following, region growing, motion detection;

Image Description:

chain codes, shape descriptors, morphology

Pattern recognition:

decision rules, clustering

^{**}Note: all Academic and Administrative policies are available on the same page.