

DEPARTMENT OF SCIEMCE

COURSE OUTLINE – WINTER 2018

CS3120 (A3): EXPERIMENTAL ROBOTICS – 3 (3-0-3) 90 Hours over 15 Weeks

INSTRUCTOR:	Libero Ficocelli	PHONE:	780 539-2825
OFFICE:	C424	E-MAIL:	LFicocelli@gprc.ab.ca
OFFICE HOURS:	TBA		

CALENDAR DESCRIPTION:

A project-based course dealing with the design and implementation of behaviour-based robots to accomplish specific tasks. Students work in groups and are introduced to concepts in sensor technologies, sensor data processing, motion control, embedded system design, real-time programming and behaviour arbitration.

PREREQUISITE(S)/COREQUISITE: CS2290 or CS3290 or permission of the instructor

REQUIRED TEXT/RESOURCE MATERIALS: Online materials will be provided

The Robotics Primer	Robotics Explorations		
Maja J Mataric	Fred Martin		
MIT Press	Prentice Hall		
(recommended)	(will be provided)		

DELIVERY MODE(S): In class lecture

COURSE OBJECTIVES:

The course will provide students an opportunity to integrate knowledge of software and hardware design in the context of building autonomous robots. Students will become extremely familiar with the difficulties of designing hardware and software which must work in the **real world**. Construction of working robotic systems will enable students to learn about numerous robot concepts, terminology and embedded systems design techniques. Students will be introduced to :

- the Arduino hardware platform and software IDE.
- numerous sensor, motor, IO and communication shields

- the use of various communication protocols
- digital and analog circuitry for interfacing with raw sensors and IO devices
- motion control
- sensor processing
- behavioral robotics

LEARNING OUTCOMES:

Students will be able to :

- work with the Arduino platform
- interface an arduino microcontroller to numerous sensors such as encoders, buttons, photocells, IR ranging sensors, potentiometers, IR sensors, IR reflective photosensors, tilt sensors, sonar and PIR sensors (others as available)
- be able to control numerous actuators such as DC motors, servo motors, laser pointers, LED, LCD, OLED displays, and relays
- implement interrupt driven software
- implement PID controller
- use I²C, SPI and IR communications
- use behavioral robotic concepts to control robot functionality

TRANSFERABILITY:

University of Alberta, University of Calgary, University of Lethbridge, Athabasca University,

*Warning: Although we strive to make the transferability information in this document up-to-date and accurate, the student has the final responsibility for ensuring the transferability of this course to Alberta Colleges and Universities. Please consult the Alberta Transfer Guide for more information. You may check to ensure the transferability of this course at Alberta Transfer Guide main page http://www.transferalberta.ca or, if you do not want to navigate through few links, at http://alis.alberta.ca/ps/tsp/ta/tbi/onlinesearch.html?SearchMode=S&step=2

** Grade of D or D+ may not be acceptable for transfer to other post-secondary institutions. **Students** are cautioned that it is their responsibility to contact the receiving institutions to ensure transferability

EVALUATIONS:

35 % -- Lab Assignments/Mini-projects

- 20 % -- Final Project/Report
- 10 % -- Log book
- 35 % -- Final Exam

GRADING CRITERIA:

Please note that most universities will not accept your course for transfer credit **IF** your grade is **less** than C-.

Alpha	4-point	Percentage	Alpha	4-point	Percentage
Grade	Equivalent	Guidelines	Grade	Equivalent	Guidelines
A+	4.0	90-100	C+	2.3	67-69
А	4.0	85-89	С	2.0	63-66
A-	3.7	80-84	C-	1.7	60-62
B+	3.3	77-79	D+	1.3	55-59
В	3.0	73-76	D	1.0	50-54
B-	2.7	70-72	F	0.0	00-49

COURSE SCHEDULE/TENTATIVE TIMELINE:

- introduction to robotic history, robots and human culture and general terminology
- current state of robotics in society as well as potential for future adoption
- Overview of various sensor technologies
- Robotic control architectures
- PID control
- Behavioral robotics
- the Arduino platform
- arduino resources including libraries, code examples and tutorials
- actuator control
- sensor interfacing
- data storage (flash, sram, eeprom, SD cards)
- interrupts and interrupt handling
- communication methodologies (serial, I²C, SPI and IR)
- Bluetooth communications

STUDENT RESPONSIBILITIES:

CLASS and LAB attendance is **mandatory**. You must clear all absences with me; failure to comply will result in a failing grade for the course!

STATEMENT ON PLAGIARISM AND CHEATING:

Cheating and plagiarism will not be tolerated and there will be penalties. For a more precise definition of plagiarism and its consequences, refer to the Student Conduct section of the College Admission Guide at <u>http://www.gprc.ab.ca/programs/calendar/</u> or the College Policy on Student Misconduct: Plagiarism and Cheating at <u>www.gprc.ab.ca/about/administration/policies/**</u>

**Note: all Academic and Administrative policies are available on the same page.