Grande Prairie Regional College Department of Science and Technology

PC 1310 - Mechanics

Winter Session, 2001 4.3(3-1.5-3)UT U of A Equivalent – EN PH 131

Course Outline

This course includes: kinematics and dynamics of particles; gravitation; work and energy; linear momentum; angular momentum; systems of particles; introduction to dynamics of rigid hodies are covered in the course.

Prerequisite: MA 1000, EG 2300

Corequisite: MA 1010 Pre- or Corequisite: PC 1300 Note: Restricted to engineering students only.

Instructor	Jaime P. S J209 53 santiago@	9-2865	Ĺ		
Lecture	M 11	:30 - 12:50) J229	F	10:00 - 11:20 J201
Laboratory	W 14	:30 - 16:00) 1103		16:00-17:20 TBA
Seminar	M 15	:30 - 16:20	J229		
Textbook	R. C. Hibb Prentice H Fundamen	eler fall stals of Phy esnick, Da	/sics, 6 th Eo	lition	mics, 8 th Edition I Walker
Laboratory Manual	Physics 13 Department University	nt of Physi		ory Manua	al
Marks Distribution	Problem S Seminars Laboratory Midterm F Final Exar Note that sa this course.	Work Exam	20% (Feb 50% (U o	ruary 23, 200 f A Common	iss the lab to pass the course.) (1) Final Exam, date TBA) s is required in order to pass

Lecture Topics

Topic	Lectures/ Days	Concepts to be Learned	
Introductory Material	t	Fundamental quantities, dimensional analysis, idealizations	
Kinematics of Rectilinear Motion	3	Absolute motion along a line; position, speed, displacement, velocity and acceleration; constant and variable acceleration; erratic motion	
Kinematics of Planar Motion	4	Position, displacement, velocity and acceleration in 2 dimensions; Cartesian components; projectile motion; normal and tangential components; absolute dependent motion; relative motion	
Dynamics of a Particle	4	Newton's Laws of Motion for a single particle, inertial frames of reference; Newton's Law of Universal Gravitation; friction, Cartesian components; normal and tangential components, circular motion; central force motion	
Systems of Particles	1	Internal and external forces; center of mass and gravity; Newton's laws of motion for systems of particles	
Work and Energy	3	Work done by a force; kinetic energy; Principle of Work and Energy for a particle, systems of particles; power and mechanical efficiency; conservative and non-conservative forces, potential energy, Law of Conservation of Energy	
Linear Momentum and 3 Impulse		Definition of linear momentum; Principle of Impulse and Momentum; systems of particles; conservation of linear momentum for a system of particles, collisions	
Introduction to Rigid Body Dynamics	3	Rigid bodies; angular displacement, velocity and acceleration; kinetic energy; moment of inertia; torque (moment of force); Newton's laws for rotational motion	
Angular Impulse and Momentum	2	Definition of angular momentum (moment of momentum) and impulse; angular momentum of a rigid body; Principle of Angular Impulse and Momentum; Conservation of Angular Momentum	

Assignments

Problem Set	Due Date	Problems
1	January 19	Hibbeler: I-13, I-16, 12-7, 12-12, 12-18
2	January 26	Hibbeler: 12-22, 12-27, 12-32, 12-53, 12-63
3	February 2	Hibbeler: 12-84, 12-97, 12-98, 12-102, 12-107
4	February 9	Hibbeler: 12-119, 12-126, 12-179, 12-183, 12-198
5	February 16	Hibbeler: 13-3, 13-11, 13-27, 13-33, 13-47
6	March 9	Hibbeler: 13-56, 13-61, 13-67, 13-72, 13-81
7	March 16	Hibbeler: 14-5, 14-13, 14-35, 14-81, 14-95
8	March 23	Hibbeler: 15-18, 15-27, 15-43, 15-48, 15-54
9	March 30	Hibbeler: 15-61, 15-68, 15-82, 15-86 HRW; Ch. 11 – 28P, 44P
10	April 9	HRW: Ch. 11 - 54P, 56P, 57P Ch. 12 - 12P, 14P

Laboratory Work

Lab. No.	Date	Title
1	January 10/17	Kinematics of Non-uniform Motion
2	January 24/31	Acceleration Due to Gravity
3	February 2/14	Atwood's Pulley
4	February 21/ March 7	Conservation of Mechanical Energy (Note: There is a lab during midterm week.)
5	March 14/21	Collision: Ramp
6	March 28/ April 4	Moment of Inertia

The following was taken directly from the U of A ENPH 131 website. It also applies to you!

ENPH 131 Assignments (January - April 2001)

There will be ten assignments throughout the term, each consisting of five problems taken from the course textbooks. Annuancements reminding you of the assignments will be made in class on Wednesdays with the assignment normally due at 4:00 PM on Thursday one week later. Assignments are to be placed in the appropriate drop-box in the corridor between V-Wing and the Physics building. Solutions will be posted in the glass cabinets in the same location.

Please note the following:

- 1. Use the correct format for engineering assignments.
- 2. You must use engineering paper.
- 3. Show all your work.
- Diagrams should be reasonably sized, neat, and legible. All quantities and coordinate conventions should be defined. Diagrams are COMPULSORY for problems involving FBDs and Mass-Acceleration diagrams. In order to force good work habits errors or omissions in these diagrams will be HEAVILY penalized.
- 5. Messy work will not be marked. This will be strictly enforced.
- Your assignment pages MUST be stapled.
- Make sure your name and section number are on the top of each page. Assignments submitted to the wrong section will be considered lost and given a mark of zero
- 8. Late assignments will be accepted only with a note from Student Health or your physician.
- Marked assignments will be returned one week later and kept on file for several weeks. Unclaimed assignments will be destroyed.

This course is NOT about remembering formulas. In fact there are very few formulas used in the course. The problems listed below are the MINIMUM that you should do out of the textbook. You should attempt as many other problems as you can. In that way, you will see how the laws of mechanics can be applied in a wider variety of problems, and get you better prepared for the exams. If you have difficulty with any problems, see your instructor - they will be glad to help, and suitably impressed by your initiative!

Exam problems almost never closely resemble any homework problem or class example!! Understand what you are doing and WHY.