Grande Prairie Regional College Department of Science and Technology

PC 1310 - Mechanics

Winter Session, 2002 4.3(3-1.5-3)UT U of A Equivalent – EN PH 131

Course Outline

This course includes: kinematics and dynamics of particles; gravitation; work and energy; linear momentum; angular momentum; systems of particles; introduction to dynamics of rigid bodies are covered in the course.

Prerequisite: MA 1000, EG 2300

Corequisite: MA 1010 Pre- or Corequisite: PC 1300 Note: Restricted to engineering students only.

Instructor	Jaime P. Santiago J209 539-2865 santiago@gprc.ab.ca		
Lecture	T 1:30 - 2:20 W 10:30 - 11:2 F 11:30 - 12:2	0 J202	
Laboratory	R 8:30 - 11:20	J103	
Seminar	R 14:30 - 15:2	0 J202	
Textbook	Engineering Mechanics, Statics and Dynamics, 9 th Edition R. C. Hibbeler Prentice Hall Fundamentals of Physics, 6 th Edition Richard Resnick, David Halliday and Jearl Walker John Wiley and Sons		
Laboratory Manual	Physics 130, En Ph 131 Laboratory Manual Department of Physics University of Alberta		
Marks Distribution	Problem Sets Seminars Laboratory Work Midterm Exam Final Exam Note that satisfactory p	5% 5% 20% (Students must pass the lab to pass the course.) 20% (Friday, February 22, 2002) 50% (U of A Common Final Exam, date TBA) performance on the exams is required in order to pass	

Lecture Topics

Topic	Lectures/ Days	Concepts to be Learned
Introductory Material	1	Fundamental quantities, dimensional analysis, idealizations
Kinematics of Rectilinear Motion	5	Absolute motion along a line; position, speed, displacement, velocity and acceleration; constant and variable acceleration; erratic motion
Kinematics of Planar Motion	5	Position, displacement, velocity and acceleration in 2 dimensions; Cartesian components; projectile motion; normal and tangential components; absolute dependent motion; relative motion
Dynamics of a Particle	5	Newton's Laws of Motion for a single particle, inertial frames of reference; Newton's Law of Universal Gravitation; friction, Cartesian components; normal and tangential components, circular motion; central force motion
Systems of Particles	2	Internal and external forces; center of mass and gravity; Newton's laws of motion for systems of particles
Work and Energy	6	Work done by a force; kinetic energy; Principle of Work and Energy for a particle, systems of particles; power and mechanical efficiency; conservative and non-conservative forces, potential energy, Law of Conservation of Energy
Linear Momentum and Impulse	4	Definition of linear momentum; Principle of Impulse and Momentum; systems of particles; conservation of linear momentum for a system of particles, collisions
Introduction to Dynamics of a Rigid Body	4	Rigid bodies; angular displacement, velocity and acceleration; kinetic energy; moment of inertia; torque (moment of force); Newton's laws for rotational motion
Angular Impulse and Momentum	4	Definition of angular momentum (moment of momentum) and impulse; angular momentum of a rigid body; Principle of Angular Impulse and Momentum; Conservation of Angular Momentum

Assignments

Problem Set	Due Date	Problems
_1	January 15	Hibbeler:
2	January 22	Hibbeler:
3	January 29	Hibbeler:
4	February 5	Hibbeler:
5	February 12	Hibbeler:
6	March 12	Hibbeler:
7	March 19	Hibbeler:
8	March 26	Hibbeler:
9	April 2	Hibbeler: HRW:
10	April 9	HRW:

Laboratory Work

Expt. No.	Date	Title	
6	January 17	Acceleration Due to Gravity	
7	January 31	Non-Uniform Motion	
8	February 14	Atwood's Pulley	
9	March 7	Conservation of Mechanical Energy	
10	March 21	Collision; Ramp	
11	April 4	Moment of Inertia	