Grande Prairie Regional College Department of Science and Technology ## PC 1310 - Mechanics Winter Session, 2003 4.3(3-1.5-3)UT U of A Equivalent – EN PH 131 #### Course Outline This course includes: kinematics and dynamics of particles; gravitation; work and energy; linear momentum; angular momentum; systems of particles; introduction to dynamics of rigid bodies are covered in the course. Prerequisite: MA 1000, EG 2300 Corequisite: MA 1010 Pre- or Corequisite: PC 1300 Note: Restricted to engineering students only. | Instructor | Jaime P. Santiago
J209 539-2865
santiago@gprc.ab.ca | | | | | |-----------------------|--|---------------------|--|--|--| | Lecture | TRF 9:0 | 00 - 9:50 | 3229 | | | | Laboratory | F 10 | :00 - 12:50 | J103 | | | | Seminar | M 13 | :00-13:50 | J229 | | | | Textbook | Engineering Mechanics, Statics and Dynamics, 9 th Edition
R. C. Hibbeler
Prentice Hall
Fundamentals of Physics, 6 th Edition
Richard Resnick, David Halliday and Jearl Walker
John Wiley and Sons | | | | | | Laboratory
Manual | Physics 130, En Ph 131 Laboratory Manual
Department of Physics
University of Alberta | | | | | | Marks
Distribution | Problem S
Seminars
Laborator
Midterm
Final Exa
Note that s
this course | y Work
Exam
m | 5% 5% 20% (Students must pass the lab to pass the course,) 20% (Thursday, February 20, 2003) 50% (U of A Common Final Exam, date TBA) formance on the exams is required in order to pass performance" is defined by U of A every year. | | | # Lecture Topics | Topic | Lectures/
Days | Concepts to be Learned | |--|-------------------|--| | Introductory Material | 1 | Fundamental quantities, dimensional analysis, idealizations | | Kinematics of
Rectilinear Motion | 5 | Absolute motion along a line; position, speed,
displacement, velocity and acceleration; constant and
variable acceleration; erratic motion | | Kinematics of Planar
Motion | 5 | Position, displacement, velocity and acceleration in 2
dimensions; Cartesian components; projectile motion;
normal and tangential components; absolute dependent
motion; relative motion | | Dynamics of a Particle | S | Newton's Laws of Motion for a single particle, inertial frames of reference; Newton's Law of Universal Gravitation; friction, Cartesian components; normal and tangential components, circular motion; central force motion | | Systems of Particles | 2 | Internal and external forces; center of mass and gravity;
Newton's laws of motion for systems of particles | | Work and Energy | 6 | Work done by a force; kinetic energy; Principle of Work
and Energy for a particle, systems of particles; power and
mechanical efficiency; conservative and non-conservative
forces, potential energy, Law of Conservation of Energy | | Linear Momentum and
Impulse | 4 | Definition of linear momentum; Principle of Impulse and
Momentum; systems of particles; conservation of linear
momentum for a system of particles, collisions | | Introduction to
Dynamics of a Rigid
Body | 5 | Rigid bodies; angular displacement, velocity and
acceleration; kinetic energy; moment of inertia; torque
(moment of force); Newton's laws for rotational motion | | Angular Impulse and
Momentum | 3 | Definition of angular momentum (moment of momentum)
and impulse; angular momentum of a rigid body;
Principle of Angular Impulse and Momentum;
Conservation of Angular Momentum | ### Assignments | Problem
Set | Due Date | Problems | |----------------|-------------|---| | 1 | January 17 | Hibbeler: TBA Look at U of A ENPH 131 course website. | | 2 | January 24 | Hibbeler: TBA | | 3 | January 31 | Hibbeler: TBA | | 4 | February 7 | Hibbeler: TBA | | 5 | February 14 | Hibbeler: TBA | | 6 | March 7 | Hibbeler: TBA | | 7 | March 14 | Hibbeler: TBA | | 8 | March 21 | Hibbeler: TBA | | 9 | March 28 | Hibbeler: TBA
HRW: TBA | | 10 | April 4 | HRW: TBA | Note: Assignments are due at the start of the class on the dates indicated above. No late assignments will be accepted. ## Laboratory Work | Expt. No. | Date | Title | |-----------|------------|-----------------------------------| | 6 | January 10 | Acceleration Due to Gravity | | 7 | January 24 | Non-Uniform Motion | | 8 | February 7 | Atwood's Pulley | | 9 | March 7 | Conservation of Mechanical Energy | | 10 | March 21 | Collision: Ramp | | 11 | April 4 | Moment of Inertia | Note: Lab reports are due at 1:00 p.m. one week after the lab is performed. No late reports will be accepted.