

INFORMATION FOR COURSE PC 1310: MECHANICS WINTER 1998

Instructor:	Tola	Adeodu,	Room J209,	Ext. 2865
Locture:	TR	9:30 +	10:50 a.m.	J229
Laboratory:	M	3:00 -	5:50 p.m.	J107
Seminar:	TR	1:30 -	2:20 p.m.	TBA

Text: "Engineering Mechanics: Statics and Dynamics", R.C. Hibbeler, Prentice Hall, 7th Ed., 1995

Grading (%) Assignments Labs Mid-term Exam (#1) Mid-term Exam (#2) Final Exam Total	10 10 20 (Scheduled for end of 2nd week in February) 25 (Scheduled for end of 2nd week in March) 35
---	---

Detailed Course Outline

- Introductory material (1 week).
 This is a review of the material in Chapter 1 of the main text.
 The review covers topics like classification, definitions.
 fundamental quantities and units.
- Z. Kinematics of rectilinear motion of a particle (2 weeks). Sections 12.1 - 12.2 of Hibbeler. Definitions and calculations of position, displacement, velocity. acceleration, distance and speed. Average and instantaneous values. Cases of constant and variable acceleration. Graphical methods.
- 3. Kinematics of planar motion of a particle (2 weeks), Sections 12.3 - 12.6; 12.8 - 12.9. Rectangular Cartesian components, projectiles. Normal and tangential componets treated in general and for circular motion, Connected particles, pulley systems. Relative motion.
- 4. Dynamics of a particle (2 weeks).
 Sections 13.1 13.2; 13.4 13.5
 Newton's laws, inertial frame of reference, Gravitation, mass and weight. FBD, Rectangular Cartesian components, normal and tangential components, friction, Circular motion and central force motion.

- S. Application of Newton's 2nd law to a system of particles (1 week).
 Section 13.3.
 Internal and external forces, centres of mass and executive.
- Internal and external forces, centres of mass and gravity, centroid.
- 6. Work and energy (2 weeks)
 Sections 14.1 14.6.
 Calculation of work in various settings spring, gravity,
 friction etc. Principle of work and energy for a particle and a
 system of particles. Power and mechanical efficiency. Potential
 energy, energy conservation, conservative forces.
- 7. Linear momentum and impulse (2 weeks)
 Sections 15.1 15.4.
 Definition of linear momentum.
 impulse. Application to a system of particles. Collisions,
 coefficient of restitution, impacts for which 0 (e (1.
 Plastic, elastic and oblique impacts.
- B. Dynamics of a rigid body (1 week)
 Sections 16.1-16.3; 17.1-17.4
 Angular velocity, kinetic energy. Moment of inertia. Moment of
 force and angular acceleration, Equations for planar motion, FBD.
 Work, energy and power for rigid body rotation.
- 9. Angular momentum (1 week)
 Sections 15.5 15.7
 Definitions of angular momentum, angular impulse. Principle of angular momentum and impulse for a system of particles. Conservation of angular momentum. Rigid bodies.